REVIEW

Autosomal Recessive Congenital Ichthyosis☆

L. Rodríguez-Pazos, a, ∗ M. Ginarte, a A. Vega, b J. Toribioa

a Departamento de Dermatología, Complejo Hospitalario Universitario, Facultad de Medicina, Santiago de Compostela, Spain
b Fundación Pública Galega de Medicina Xenómica-SERGAS, Grupo de Medicina Xenómica-USC, CIBERER, IDIS, Santiago de Compostela, Spain

Received 13 September 2011; accepted 13 November 2011
Available online 3 April 2013

KEYWORDS
Ichthyosis;
Autosomal recessive congenital ichthyosis;
ARCI;
TGM1;
ALOXE3

Abstract
The term autosomal recessive congenital ichthyosis (ARCI) refers to a group of rare disorders of keratinization classified as nonsyndromic forms of ichthyosis. This group was traditionally divided into lamellar ichthyosis (LI) and congenital ichthyosiform erythroderma (CIE) but today it also includes harlequin ichthyosis, self-healing collodion baby, acral self-healing collodion baby, and bathing suit ichthyosis.

The combined prevalence of LI and CIE has been estimated at 1 case per 138 000 to 300 000 population. In some countries or regions, such as Norway and the coast of Galicia, the prevalence may be higher due to founder effects. ARCI is genetically highly heterogeneous and has been associated with 6 genes to date: TGM1, ALOXE3, ALOX12B, NIPAL4, CYP4F22, and ABCA12. In this article, we review the current knowledge on ARCI, with a focus on clinical, histological, ultrastructural, genetic, molecular, and treatment-related aspects.

© 2011 Elsevier España, S.L. and AEDV. All rights reserved.

PALABRAS CLAVE
Ictiosis;
Ictiosis congénita autosómica recesiva; ICAR;
TGM1;
ALOXE3

Resumen
Las ictiosis congénitas autosómicas recesivas (ICAR) son trastornos infrecuentes de la queratinización que se engloban en las formas no sindrómicas de ictiosis. Clásicamente se distingüan en este grupo la ictiosis laminar (IL) y la eritrodermia ictiosisiforme congénita (EIC). Actualmente se incluyen también la ictiosis arlequín, el bebé colodión autorresolutivo, el bebé colodión autorresolutivo acral y la ictiosis en traje de baño.

Se ha estimado una prevalencia conjunta para IL y EIC de 1:138.000 a 1:300.000. En algunos países o regiones, como Noruega y la costa gallega, la prevalencia podría ser mayor debido a la existencia de efectos fundadores. Desde el punto de vista genético son muy heterogéneas. Seis genes se han asociado a estas entidades: TGM1, ALOXE3, ALOX12B, NIPAL4, CYP4F22 y ABCA12. En este trabajo se pretenden revisar los conocimientos actuales en el campo de las ICAR, incluyendo aspectos clínicos, histológicos, ultraestructurales, genético-moleculares y de tratamiento.

© 2011 Elsevier España, S.L. y AEDV. Todos los derechos reservados.

Please cite this article as: Rodríguez-Pazos L, et al. Ictiosis congénitas autosómicas recesivas. Actas Dermosifiliogr. 2013;104:270-84.

∗ Corresponding author.
E-mail address: ladrizos@hotmail.com (L. Rodríguez-Pazos).

1578-2190/$ – see front matter © 2011 Elsevier España, S.L. and AEDV. All rights reserved.
Autosomal Recessive Congenital Ichthyosis

Introduction

The latest consensus classification of ichthyosis differentiates between 2 main forms: the nonsyndromic forms, which present with skin manifestations only, and the syndromic forms, which present with manifestations in other organs as well (Table 1). Among the nonsyndromic forms, 4 groups are identified: common ichthyoses, autosomal recessive congenital ichthyoses (ARCs), keratinopathic ichthyoses, and other less common ichthyoses. Traditionally, the group of ARCs was divided into 2 disorders, lamellar ichthyosis (LI) and congenital ichthyosiform erythroderma (CIE). In the new classification, harlequin ichthyosis (HI) was added to this group because inactivating mutations in the ABCA12 gene have been identified as responsible for this disorder, while nonsense mutations in the same gene may give rise to the LI or CIE phenotype. Other less common variants included in the group of ARCs are self-healing collodion baby (SHCB), acral SHCB, and bathing suit ichthyosis.

Only limited data are available on the epidemiology of ARCs. In the United States, a prevalence at birth of 1 per 100,000 population for LI and of 1 per 200,000 population for CIE has been estimated. Other studies have reported a combined prevalence for LI and CIE of 1 per 200,000 to 300,000 population. In some countries such as Norway, the estimated prevalence is greater (1 per 91,000) due to founder mutations. The finding of 1 or several recurrent mutations in a population may be because the mutation occurred at a given point in history and was then passed from generation to generation (founder mutation) or because the region of the genome where the mutation is found has a DNA sequence susceptible to mutation (mutation hotspot). In Spain, the estimated prevalence of ARCI is 1 per 138,000 in the general population and 1 per 61,700 among children under 10 years of age. In certain regions of Spain, the prevalence might be even higher. On the Galician coast, for example, a prevalence of 1 per 33,000 was reported, due also to a founder effect.

Clinical Characteristics

Although it was originally thought that LI and CIE were different entities, there have been reports of patients with intermediate clinical manifestations and both conditions can be caused by mutations in the same gene. In addition, patients with the same mutation, even within the same family, can develop different phenotypes.

Most patients are born enveloped in a collodion membrane that progressively disappears during the first weeks of life and is replaced by the definitive phenotype (Fig. 1A). Hypohidrosis, severe heat intolerance, and nail dystrophy are frequently observed in both LI and CIE. Patients with LI usually have more severe clinical manifestations than those with CIE. They have large plate-like scales, often of a dark color, covering the whole body surface area. Erythroderma is either absent or minimal. Such patients usually have ectropion and, at times, eclabium, hypoplasia of joint and nasal cartilage, scarring alopecia, especially at the edge of the scalp, and palmoplantar keratoderma (Fig. 1B and C). CIE is characterized by the presence of erythroderma and fine whitish scaling (Fig. 2). Some patients have marked erythema and generalized scaling. The scales can be large and dark colored, particularly on the extensor surfaces of the legs. In less severe cases, erythema is mild and the scaling is fine.

Histopathology

Histopathologic changes do not provide a diagnosis. In LI, massive orthokeratotic hyperkeratosis is observed, usually with twice the extension as in CIE. The epidermis is acanthotic and occasionally takes on a psoriasis-like appearance. The cell proliferation rate is normal or slightly elevated. Patients with CIE have less marked hyperkeratosis, with focal or extensive parakeratosis, a normal or thickened granular layer, and more pronounced acanthosis. The epidermal turnover is increased.

Ultrastructure

Although a close correlation between molecular, clinical, and ultrastructural findings has so far not been found, electron microscopy may nevertheless be useful for ruling out other forms of ichthyosis and for guiding genetic analyses in some cases. Four types of congenital ichthyosis have been described (Table 2).

Congenital Ichthyosis Type 1

Congenital ichthyosis type 1 is characterized by the absence of ultrastructural markers for ichthyosis types 2, 3, and 4. Therefore, diagnosis is usually only made when the other types have been excluded. The most frequent finding is the presence of lipid droplets or rings in the stratum corneum (Fig. 3A). These lipid droplets are not a constant feature or specific to this particular type as they are not present in all cases, and they may be present in other types of ichthyosis. Clinically, most patients present with manifestations of CIE. One-third of patients have mutations in the TGM1 gene. This ultrastructural type has also been identified in association with mutations in the ALOX12B gene.

Congenital Ichthyosis Type 2

Congenital ichthyosis type 2 is characterized by cholesterol clefts in the stratum corneum (Fig. 3B). Such clefts are a constant finding in this type of ichthyosis, and can be detected in different biopsies in the same patient; treatment with oral retinoids has no impact on these clefts. Electron-dense aggregates have also been observed on corneocytes in some patients with deficient TGase 1 activity. Clinically, most patients present with severe manifestations of CIE. This ultrastructural type is strongly associated with mutations in the TGM1 gene.

Congenital Ichthyosis Type 3

Congenital ichthyosis type 3 is characterized by lamellar membranous structures in the stratum granulosum and/or stratum corneum. These structures are arranged in strips around an empty space close to the nucleus.22,29-31 The clinical manifestations in this type are different to the others; onset of ichthyosis is variable, desquamation and erythema may be patchy or generalized, and the flexures in particular are affected. Mutations in the NIPAL4 gene are responsible for 93% of ichthyoses type 3.32

Congenital Ichthyosis Type 4

Characteristically, in congenital ichthyosis type 4, some cells in the stratum granulosum and stratum corneum are filled with trilamellar membrane packages.33 These findings are pathognomonic for ichthyosis prematurity syndrome, a condition currently considered as a syndromic form of ichthyosis.34,35

Molecular Studies

In genetic terms, the ARCIs are very heterogeneous. The TGM1 gene is associated with most cases, but mutations in 5 other genes (ALOX12B, ALOXE3, NIPAL4, CYP4F22, and ABCA12) have been reported. Fischer et al.36 studied 520 families with ARCI and identified mutations in at least 1 of these genes in 78% of cases (TGM1 in 32%, NIPAL4 in 16%, ALOX12B in 12%, CYP4F22 in 8%, ALOXE3 in 5%, and ABCA12 in 5%). In another study of 250 patients with ARCI of different origins, 38% had TGM1 mutations, 6.8% had ALOXE3 mutations, and 6.8% had ALOX12B mutations.37 In Galicia, we identified mutations in the TGM1, ALOX12B, ALOXE3, NIPAL4, and CYP4F22 genes in 75% of the families studied, but the distribution of mutations was different.14 The TGM1 gene was mutated in 68.7% of the cases while the ALOXE3 gene was mutated in just 1 patient. We did not detect mutations in any of the other 3 genes studied.

TGM1

The TGM1 gene is located on chromosome 14q11.2 and has 15 exons (GenBank NM-000359.2). It encodes the TGase 1 enzyme, which is one of the 3 TGase enzymes found in the epidermis.38 This enzyme participates in the formation of the cornified envelope by catalyzing calcium-dependent cross-linking of several proteins such as involucrin, loricrin, and proline-rich proteins.39,40 It also catalyzes binding of ω-hydroxyceramides in the outer layer of the cornified envelope with proteins in the inner layer.41,42 In patients...
Table 1 Consensus Classification Based on the Clinical Features of Ichthyosis

<table>
<thead>
<tr>
<th>Nonsyndromic Forms</th>
<th>Syndromic Forms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common Ichthyoses</td>
<td>Syndromic X-linked Ichthyosis</td>
</tr>
<tr>
<td>Ichthyosis vulgaris</td>
<td>Recessive x-linked ichthyosis (syndromic)</td>
</tr>
<tr>
<td>Recessive x-linked ichthyosis (nonsyndromic)</td>
<td>Ichthyosis follicularis, alopecia, and photophobia (IFAP) syndrome</td>
</tr>
<tr>
<td>ARCI</td>
<td>Conradi-Hünermann-Happle syndrome</td>
</tr>
<tr>
<td>Major forms</td>
<td>(chondrodysplasia punctata type 2)</td>
</tr>
<tr>
<td>Harlequin ichthyosis</td>
<td></td>
</tr>
<tr>
<td>Lamellar ichthyosis</td>
<td></td>
</tr>
<tr>
<td>Congenital ichthyosiform erythroderma</td>
<td></td>
</tr>
<tr>
<td>Minor forms</td>
<td>Syndromic Autosomal Ichthyosis</td>
</tr>
<tr>
<td>Self-healing collodion baby</td>
<td>Skin disorders</td>
</tr>
<tr>
<td>Acral self-healing collodion baby</td>
<td>Netherton syndrome</td>
</tr>
<tr>
<td>Bathing suit ichthyosis</td>
<td>Ichthyosis-hypotrichosis syndrome</td>
</tr>
<tr>
<td></td>
<td>Ichthyosis-sclerosing cholangitis syndrome</td>
</tr>
<tr>
<td></td>
<td>Trichothiodystrophy</td>
</tr>
<tr>
<td>Keratinopathic Ichthyoses</td>
<td>Neurologic disorders</td>
</tr>
<tr>
<td>Major forms</td>
<td>Sjögren-Larsson syndrome</td>
</tr>
<tr>
<td>Epidermolytic ichthyosis</td>
<td>Refsum disease</td>
</tr>
<tr>
<td>Superficial epidermolytic ichthyosis</td>
<td>Fatal disease course</td>
</tr>
<tr>
<td>Minor forms</td>
<td>Gaucher disease, type 2</td>
</tr>
<tr>
<td>Annular epidermolytic ichthyosis</td>
<td>Multiple sulfatase deficiency</td>
</tr>
<tr>
<td>Curth-Macklin ichthyosis</td>
<td>CEDNIK syndrome</td>
</tr>
<tr>
<td>Autosomal recessive epidermolytic ichthyosis</td>
<td>ARC syndrome</td>
</tr>
<tr>
<td>Epidermolytic nevus</td>
<td>Other associated signs</td>
</tr>
<tr>
<td></td>
<td>KID syndrome</td>
</tr>
<tr>
<td></td>
<td>Chanarin-Dorfman syndrome</td>
</tr>
<tr>
<td></td>
<td>Ichthyosis-Dorfman syndrome</td>
</tr>
<tr>
<td></td>
<td>Ichthyosis prematurity syndrome</td>
</tr>
<tr>
<td>Other Forms</td>
<td></td>
</tr>
<tr>
<td>Loricrin keratoderma</td>
<td></td>
</tr>
<tr>
<td>Erythrokeratodermia variabilis</td>
<td></td>
</tr>
<tr>
<td>Peeling skin syndrome</td>
<td></td>
</tr>
<tr>
<td>Congenital reticular ichthyosiform erythroderma</td>
<td></td>
</tr>
<tr>
<td>KLICK syndrome</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: AR, arthrogryposis–renal dysfunction–cholestasis; ARCI, autosomal recessive congenital ichthyosis; CEDNIK, cerebral dysgenesis, neuropathy, ichthyosis, and palmoplantar keratoderma; KID, keratitis ichthyosis deafness; KLICK, keratosis linearis with ichthyosis congenital and sclerosing keratoderma; MEDNIK, mental retardation, enteropathy, deafness, peripheral neuropathy, ichthyosis, keratoderma.

with TGM1 mutations, the cornified envelope is missing and TGase 1 activity is reduced or nonexistent.43-47

Since 1995, when this gene was identified as responsible for some cases of ARCI,48-50 more than 110 mutations have been reported in patients of different origins. Mutations in TGM1 are the most common cause of ARCI.36,37 This mutation has been found in 55% of cases in the United States and in 84% of cases in Norway.12,51 The most frequent mutation is c.877-2A > G, which has been found in 34% of the mutated alleles reported to date.52 The high frequency of this mutation in countries such as the United States and Norway is due to a founder effect.12,53 The second most frequent mutation is p.Arg142His. This and similar mutations have been reported in countries such as Egypt, Germany, Finland, and the United States,15,49-51,54-56 and it would seem that these are hotspot mutations.57 The p.Arg307Trp mutation is frequent in the Japanese population.5 In Galicia, the p.Arg760X, c.1223,1227delACACA and c.984 + 1G > A mutations in TGM1 were identified in 81.82% of the families with mutations in this gene, suggesting a founder effect.14 Confirmation of this hypothesis was obtained by haplotype study (work as yet unpublished).

TGM1 mutations are responsible for most cases of LI15,27,44,46,56-63 and for a small percentage of cases of CIE.43,47,64,65 Such mutations can also give rise to other forms of ARCl such as SHCB, acral SHCB, and bathing suit ichthyosis.

Many studies have attempted to demonstrate genotype-phenotype associations between mutations in TGM1 and ultrastructural or clinical findings, but no significant correlation has been observed to date.15,16,53 In general, patients with mutations in the TGM1 gene are more severely affected than those without such mutations. In a study of 83 patients with ARCl in Sweden and Estonia, the presence of ectropion and collodion baby was associated with TGM1 mutations, while a higher rate of erythema was observed in patients without mutations in this gene.66 Another study showed that the type of scaling is the main difference between carriers and noncarriers of TGM1 mutations, on finding that all patients with mutations in this gene had lamellar scaling whereas 80% of those without TGM1 mutations had fine scaling.14 In addition, it has been seen that truncating mutations are more frequently associated with hypohidrosis and sweating disorders than missense mutations.51 In the north
Table 2 Ultrastructural Classification of Congenital Ichthyoses.

<table>
<thead>
<tr>
<th>Type</th>
<th>Main Feature</th>
<th>Other Features</th>
<th>Mutations</th>
<th>Clinical Manifestations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Absense of ultrastructural markers of ichthyosis types 2, 3, and 4</td>
<td>Lipid droplets or rings in the stratum corneum (most frequent) Small keratohyalin granules Vesicular or lobular membrane coating granules</td>
<td>TGM1 (33.3%) ALOX12B (2 cases)</td>
<td>CIE</td>
</tr>
<tr>
<td>2</td>
<td>Cholesterol clefts in the stratum corneum</td>
<td>Absence or thinning of cornified envelope Small keratohyalin granules Lipid droplets</td>
<td>TGM1 (89-100%)</td>
<td>LI</td>
</tr>
<tr>
<td>3</td>
<td>Laminated membraneous structures in the stratum granulosum and/or stratum corneum.</td>
<td>Abnormal membrane coating granules Lipid droplets Foci of prominent juxtanuclear vacuoles in the granular layer</td>
<td>NIPAL4 (93%) CIE (most frequent)</td>
<td>LI</td>
</tr>
<tr>
<td>4</td>
<td>Trilamellar membrane packets that fill some cells in the stratum granulosum and/or stratum corneum</td>
<td>Abnormal membrane coating granules</td>
<td>FTAP4</td>
<td>Ichthyosis prematurity syndrome (100%)</td>
</tr>
</tbody>
</table>

Abbreviations: CIE, congenital ichthyosiform erythroderma; LI, lamellar ichthyosis.

American population, a model based on the presence of certain clinical characteristics predicts that patients who are born as collodion babies and have ocular disorders and/or alopecia are 4 times more likely to have TGM1 mutations.51

ALOX3 and ALOX12B

The ALOX3 and ALOX12B genes are located on chromosome 17p13.1.51 They have a similar structure with 15 exons that encode the epidermal LOXs eLOX-3 and 12R-LOX.68,69 The fact that they are predominantly expressed in the suprabasal layers of the epidermis supports their role in advanced phases of epidermal differentiation, with participation in the processing of lamellar bodies.24,70 These enzymes act on adjacent steps in the hepxolin pathway (Fig. 4). 12R-LOX transforms arachidonic acid to 12R-hydroxyeicosatetraenoic acid while eLOX-3 converts this product into an epoxyalcohol isomer69,71 of the hepxolin A3 family.72 The hepxolin product is unstable and is hydrolyzed in cells to a specific trihydroxy derivative (trioxilin). Although the exact role of the products of the hepxolin pathway is not known, it has been speculated that they may participate in the formation of intercellular lipids of the stratum corneum or act as signals for inducing keratinocyte differentiation. The ALOX12B and ALOX3 genes were first identified in 2002.37,74 Since then, more than 30 mutations in the ALOX12B gene37,74,75 and approximately 10 in the ALOX3 gene37,74,75 have been reported. These mutations are responsible for 14% to 17% of ARCI cases and 72.2% of SHCBs.23,78,79 The causative relationship between these mutations and phenotype was confirmed by demonstrating that the catalytic activity of the epidermal LOX was totally abolished in patients with these mutations75,80 and by using animal models that reproduced the ichthyosiform phenotype seen in humans.81-83 Both genes are responsible for a similar percentage of ARCI cases. However, the range of different mutations in the ALOX3 gene is limited, due to the predominance of 2 mutations, p.Arg234X and p.Pro630Leu, which seem to correspond to hotspots.37,74,75

The patients with mutations in the ALOX3 and ALOX12B genes usually show a CIE phenotype.74,75,77 The severity of scaling is mild or moderate, and the scales have a whitish or light brown color. Erythema may also be present. As many as 76% of the patients are born as collodion babies and 88% have sweating disorders.37 Patients with mutations in the ALOX12B gene show more limited, whitish desquamation compared with carriers of mutations in the ALOX3 gene. In these cases, the scales are brownish and adherent. The presence of erythema, palmoplantar hyperkeratosis, and accentuation of the palmoplantar folds are also associated with ALOX12B mutations.37

Ichthyin/NIPAL4

The NIPAL4 gene, also known as the ichthyin gene, is located on chromosome 5q33. It has 6 exons that encode a protein with several transmembrane domains of unknown function.84 It has been hypothesized that the protein product participates in the same metabolic pathway as LOX and may act as a receptor for trioxilins A3 and B3 or for other metabolites of the hepxolin metabolic pathway.84 It would thus be implicated in the formation of
Figure 3 Electron microscope images. A, Congenital ichthyosis type 1, showing lipid droplets in the stratum corneum and absence of ultrastructural markers of the other types of ichthyosis. B, Congenital ichthyosis type 2, characterized by the presence of cholesterol clefts (arrow) in corneocytes.

Figure 4 Schematic diagram of the hepoxilin pathway, showing the participation of the ALOXE3, ALOX12B, NIPAL4, and CYP4F22 genes. Mutations in these genes are responsible for some types of ARCI. HPETE indicates hydroperoxyeicosatetraenoic acid.

The clinical spectrum of patients with mutations in this gene is broad, even among members of the same family. Between 3.7% and 60% are born as collodion babies. When the collodion membrane disappears, most patients develop the manifestations of CIE, with fine whitish scales on an erythematous base on the face and trunk and larger, brownish scales on the neck, buttocks, and legs. Marked xerosis, generalized brownish reticular hyperkeratotic plaques that appear accentuated in the skin folds, and facial dyschromia may be present. In addition, palmoplantar keratoderma is a frequent finding along with occasional finger contractures and curved finger nails. Some studies have reported findings more typical of LI. The presence of signs and symptoms of atopic dermatitis has been reported in some patients, although mutations in the FLG gene were not detected in any of these cases.

CYP4F22

The FLJ39501 or CYP4F22 gene is located on chromosome 19p13.12. It has 12 exons and encodes a P450 cytochrome, family 4, subfamily F, polypeptide 2, homolog of leukotriene B4-ω-hydroxylase (CYP4F2). The reaction catalyzed by the product of FLJ39501 in the skin and the substrates of that reaction may be deduced by analogy with its known homologs CYP4F2 and CYP4F3. It has been hypothesized that CYP4F2 and CYP4F3 participate in the hepoxilin pathway.
pathway by catalyzing the conversion of trioxilin A3 to 20-hydroxy-(R)trioxilin A3 and that the end product of this pathway, 20-carboxy-trioxilin A3, may have a key biological regulatory effect in the skin.

To date, only 8 mutations of this gene have been reported in 12 consanguineous families from Mediterranean countries and in 1 family of Israeli origin.

In the families reported by Lefèvre et al., most patients had a CIE phenotype at birth and this subsequently progressed to LI. Patients were usually born with marked erythroderma, although without any collodion membrane. As they got older, they developed generalized whitish-grey scaling, which was more marked in the periumbilical region, on the buttocks, and on the lower part of the body. Hyperlinearity of the palms and soles and desquamation on the scalp, at times of pityriasiform type, were frequent. In another family, the 3 members affected were born as collodion babies and developed intense erythroderma, generalized desquamation, and palmoplantar keratoderma.

ABCA12

In 2003, the ABCA12 gene was reported to be responsible for some cases of LI and was mapped to chromosome 2q34. It was subsequently confirmed that mutations in this gene were also responsible for HI. ABCA12 encodes 53 exons, and belongs to a family of ABC transporters, which bind adenosine triphosphate while also facilitating the transport of several molecules across the cell membrane. The members of the ABCA subfamily are all implicated in lipid transport. Deficient ABCA12 function causes lipid transport disorders in lamellar bodies and so lead to a decrease in intercellular lipid levels in the stratum corneum. Ultrastructural studies have shown that ABCA12 is located in lamellar bodies associated with glycosylceramides. ABCA12 mutations have been associated with disorders in the distribution and transport of glycosylceramides and with decreased levels of hydroxy-ceramides, one of the main components in the lipid barrier in the intercellular spaces. The massive hyperkeratosis that occurs in these patients could be a compensatory response to a deficient lipid barrier. It might also be due to the lack of desquamation of the corneocytes, which could be caused by defects in the transport of certain proteases, such as calicrein 5 and cathepsin D, resulting from disorders in the lamellar bodies. Murine models and in vitro studies suggest that ABCA12 mutations also have an effect on epidermal differentiation.

To date, more than 50 mutations have been reported in the ABCA12 gene in patients with ARCI from Africa, Europe, Pakistan, and Japan. The most frequent mutations are p.Val244Ser,p.Ter28, and p.Asn1380Ser, identified in Pakistani and Indian populations, and p.Asn1380Ser identified in African families. In both cases, these may be founding mutations.

The extent of the ABCA12 mutations is related to phenotype, with mutations associated with complete loss of function leading to the HI phenotype. By contrast, in LI and CIE, most mutations are missense, and have a less severe effect on protein function. The mutations underlying the LI phenotype seem to be concentrated in the first adenosine triphosphate binding cassette region.

Clinically, patients with CIE and mutations in the ABCA12 gene have medium-size scales that are somewhat larger than those usually observed in patients with this phenotype.

Harlequin Ichthyosis

HI or harlequin fetus is a severe and usually fatal form of ichthyosis. The children are usually premature with extensive shiny hyperkeratotic plaques, separated by deep fissures, that cover the entire integument and form geometric patterns reminiscent of clothing worn by harlequins, thereby giving the condition its name. Skin tightness leads to marked eversion of the eyelids and lips, rudimentary development of joint and nasal cartilage and, occasionally, microcephaly. The children rarely have eyelashes or eyebrows, although the hair on the scalp may be conserved. The hands and feet are swollen and edematous, and often covered by a glove-like layer. They may have finger contractures.

For such patients, the risk of dying during the neonatal period is very high. Pulmonary ventilation is compromised; transepidermal water loss leads to dehydration, hydroelectric imbalance, and thermal instability; and the risk of infections is increased. Facial tightness and eclabium hinder sucking and therefore feeding, with the corresponding worsening of dehydration. Neonates with this condition rarely lived longer a few weeks. In recent years, however, the chances of long-term survival have increased notably, essentially due to administration of systemic retinoids and progress in intensive neonatal care. In a recent study, 83% of the patients treated with oral retinoids survived compared to 24% of untreated patients. Most of the deaths occurred in the first 3 days of life, but treatment was not started until after this in many of the survivors. This would suggests that many of these early deaths would have occurred regardless of retinoid treatment.

The children who survive the neonatal period generally develop severe CIE. The nature and location of mutations in the ABCA12 gene and the extent of transporter function loss may determine prognosis. Patients who conserve a certain degree of protein activity, albeit minimal, may have a better chance of surviving. Carriers of homozygous mutations have a higher mortality rate.

The main histologic characteristic of HI is the presence of an extremely thick and compact orthokeratotic stratum corneum. The hair follicles and sweat ducts have prominent hyperkeratotic plugs and have abnormal or absent lamellar bodies, lipid inclusions, or remnants of organelles or nuclei in the corneocytes, and absence of intercellular lipids in the ultrastructural study. The hair follicles show a marked concentration of keratotic material, which is a diagnostic feature of HI used for prenatal diagnosis.

To date, the rate of detection of mutations in the ABCA12 gene in patients with HI is close to 100%, and so this would appear to be a genetically homogeneous condition.

Collodion Baby and Self-healing Collodion Baby

Collodion babies are usually born prematurely and perinatal morbidity and mortality are increased. At birth, the neonate is covered by a shiny taught transparent membrane...
Autosomal Recessive Congenital Ichthyosis

hindered and transepidermal loss of water and the risk of joint cartilage. Sucking and pulmonary ventilation may be have ectropion, eclabium, and hypoplasia of the nasal and lip.

Conradi-Hünermann-Happle syn- to its active form and its activity increases sufficiently to birth, when the pressure decreases, the enzyme returns the mutated enzyme into an inactive conformation. After these cases were described as LI of the newborn, but they developed.

to delay the skin biopsy until the definitive phenotype has tions of collodion baby are specific. It is therefore preferable to give way to completely normal skin. In the past, the membrane disappears spontaneously in 10% to 24% of neonates, to give way to completely normal skin. In the past, these cases were described as LI of the newborn, but they are not referred to as SHCB. Some authors have suggested because many of these patients, when reexamined later in childhood or as adults, have a variable degree of anhidrosis and heat intolerance and mild signs of ichthyosis, such as xerosis and fine desquamation, particularly in the axillae and neck.

Neither optical microscopy nor ultrastructural investigations of collodion baby are specific. It is therefore preferable to delay the skin biopsy until the definitive phenotype has developed.

Mutations have been detected in the TGM1 gene in all patients with bathing suit ichthyosis studied to date. The most common mutation is p.Arg315Leu, which has been identified in most South African patients and could be a founding mutation. Oji et al. suggested that skin temperature might play a role in the development of these manifestations. Using digital thermography, the authors showed a strong correlation between body temperature and desquamation, with the hottest areas of the body being the ones most affected. Aufenvenne et al. showed a decrease in optimum temperature for TGase 1 activity in patients with bathing suit ichthyosis. This decrease was not observed in healthy controls or in patients with generalized LI. This decrease in temperature would explain the phenotype of these patients. The optimum temperature is 37 °C for the normal enzyme but 31 °C for the mutated enzyme.

Treatment

The primary aim of treatment in ichthyosis is to elimi- nate scaling and reduce xerosis without causing excessive...
irritation (Table 3). Before deciding on treatment, aspects such as age and sex of the patient, type and severity of the disease, and extent and site of the lesions should be taken into consideration.128

Bathing and Mechanical Elimination of Scales

Daily bathing is recommended for patients with ARCI to mechanically eliminate scales and traces of moisturizer. This is easier if the patient is immersed in water for 15 to 30 minutes. Some authors recommend adding sodium bicarbonate to the bath to denaturalize the keratins and make the water alkaline, and so facilitate elimination of the scales.129 Other products that can be added include wheat starch, corn starch, or rice starch. Bathing oils are not appropriate as they may lead to occlusion with subsequent risk of bacterial proliferation and worsening of thermoregulation.

Topical Treatment

Moisturizers and topical keratolytic agents are usually the first therapeutic option. They improve skin barrier function and facilitate desquamation. Mild local adverse effects, such as transient pruritus, irritation, or stinging sensation may occur.

Sodium chloride, urea, vitamin E acetate, glycerol, and petroleum jelly can be used as moisturizers and lubricants. In patients with thick scaling and marked hyperkeratosis, 1 or more keratolytic agents, such as α-hydroxy acids (lactic and glycolic acid), salicylic acid, N-acetylcystein, urea (> 5%), and propylene glycol, can be added. Modulators of keratinocyte differentiation are also used. These include topical retinoids (tretinoin, adapalene, tazarotene), calcipotriol, and dexamethason. Topical retinoids often cause irritation and small, very painful fissures.137 Moreover, there is a risk of absorption and teratogenicity in fertile women if they are used too extensively.138 To enhance the effectiveness of keratolytics and moisturizers, occlusive dressing may be applied in specific areas refractory to treatment.139 An additive or synergistic effect can also be attained by combining 2 or more keratolytic agents or moisturizers.140-142 Treatment should be optimized for each individual, given the highly variable nature of the condition and skin sensitivity and differences in response to each treatment. The optimization process can be helped by treating one side of the body differently to the other to enable comparisons. Neonates and small children should be treated with a vehicle without any active substances as the skin is very fine and sensitive and most keratolytics are not tolerated. In addition, the risk of percutaneous absorption of topical products such as urea, salicylic acid, and lactic acid is greater.143-145

Systemic Treatment

Oral retinoids have keratolytic effects that help eliminate scales and prevent excessive hyperkeratosis. Both isotretinoin and aromatic retinoids (acitretin and etretinate) have proved effective in the treatment of ARCIs.128,146,147 Acitretin at a dose of 0.5 to 1 mg/kg/d is the most widely used drug, especially in patients with LI.148 Patients with CIE may have a more complete response and at lower doses. The main adverse effects are mucocutaneous disorders, teratogenicity, musculoskeletal disorders, and abnormal lipid profile and transaminase elevation.149-152 With regards to teratogenicity, in the case of etretinate and acitretin, the drugs should be avoided during pregnancy and patients should avoid becoming pregnant for 3 years after discontinuation of treatment.151 Isotretinoin has a shorter half-life and is completely eliminated from the organism after 1 month and so may be the preferred option in women who wish to become pregnant.128

Treatment monitoring should include a laboratory work-up with a liver function test and lipid profile before starting treatment, then at 1 month and every 3 months after starting treatment. In fertile women, a pregnancy test should be performed in the 2 weeks before starting treatment and an effective contraceptive measure should be used from 4...
weeks before treatment until 3 years afterwards (in the case of acitretin). When prolonged treatment is required with retinoids, growth and bone development should be monitored. Some authors suggest performing a bone study before treatment followed by a yearly examination. Recent guidelines do not recommend performing routine radiography because of the possible harmful effects. Instead, selective radiographic studies are recommended in patients who have atypical bone pain.

An alternative to systemic retinoid treatment is the use of drugs known as retinoic acid metabolism blocking agents, which increase the endogenous levels of retinoic acid. One such drug is liarozole, which has been granted orphan status for the treatment of LI, CIE, and HI by the European Medicines Agency and the US Food and Drug Administration. This drug has been shown to be more effective than acitretin in clinical trials and it is also better tolerated and has a better pharmacokinetic profile.

Other Medical Care

In patients with ectropion, the application of artificial tears and eye lubricants and moisturizing the skin of the face and the cheeks in particular can reduce palpebral retraction. Surgical correction is a valid option in severe cases, but this usually has to be repeated a few years later. Hydrotherapy may be beneficial. Patients should be advised to avoid strenuous physical activity when the ambient temperature is high, given that hypohidrosis carries with it the risk of heat stroke and convulsions. Oral retinoids can improve thermoregulation. Physiotherapy is important for preventing flexion contracture, particularly in the case of HI. Regular cleansing of the external auditory canal by an ear- throat-nose specialist can prevent scales from accumulating and so prevent hearing loss.

Genetic Counseling and Prenatal Diagnosis

When a patient is diagnosed with ichthyosis, he or she should be offered appropriate genetic counseling in which the nature of the disorder, the transmission mode, and the risk of future manifestations in the family are explained. Prenatal diagnosis can indicate whether the fetus is affected and, if this is the case, psychological preparation of the family can be offered and problems anticipated during pregnancy and birth. The parents can be given the option of an abortion if no treatment is available. In addition, should gene therapy for these conditions become available in the future, prenatal diagnosis would enable application of this therapy as early as possible.

For more than 20 years, prenatal diagnosis was performed by taking a biopsy sample of fetal skin and studying it by optical microscopy, electron microscopy, or immunohistochemistry. This invasive procedure could only be performed in the late phases of pregnancy, between weeks 15 and 23 of gestation, and was associated with a 1% to 3% risk of losing the fetus. Fetal DNA is obtained by amniocentesis performed between weeks 15 and 20 or by chorionic villus sampling between weeks 10 and 12. The risk of fetal loss with these techniques is less than between 0.5% and 1%. Other noninvasive methods in development are analysis of fetal cell DNA and free fetal DNA in maternal circulation as well as the use of 3-dimensional ultrasound.

Preimplantation genetic diagnosis could also be possible in in vitro fertilization techniques, such that only fertilized eggs free of the mutation are implanted in the uterus, thereby avoiding the need for abortion in most cases.

Future Strategies for Genetic Treatment of Ichthyosis

Although important progress has been made in the genetic diagnosis of ichthyosis, new strategies are also being pursued for these diseases. The skin is the most accessible organ for gene transfer therapies, and so such techniques are minimally invasive. However, the skin also has unique immunologic characteristics that do not favor long-term expression of a transgenic product. In LI, a process of ex vivo gene transfer managed to restore normal TGM1 expression and correct the phenotype of skin transplanted on the back of immunosuppressed mice. Recently, the phenotype of cultured keratinocytes from patients with HI due to mutations in the ABCA12 gene has also been recovered.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

Autosomal Recessive Congenital Ichthyosis 281

79. Kurban M, Shimomura Y, Bahhady R, Ghosn S, Kibbi AG, Christiano AM. Nonsense mutation in the ALOX12B gene leads to
autosomal recessive congenital ichthyosis in a Lebanese family.
80. Yu Z, Schneider C, Boeglin WE, Brash AR. Mutations associated
with a congenital form of ichthyosis (NCIE) inactivate the
epidermal lipoxigenases 12R-LOX and eLOX3. Biochim Biophys
85. Wajid M, Kurban M, Shimomura Y, Christiano AM. NIPAL4/itihin is expressed in the granular layer of human epidermis
87. Lefèvre C, Bouadjar B, Ferrand V, Tadini G, Mégarbané A, Lath-
rop M, et al. Mutations in a new cytochrome P450 gene in
88. Kikuta Y, Kusunose E, Kusunose M. Prostaglandin and leuko-
trienes omega-hydroxylases. Prostaglandins Other Lipid
90. Dean M, Allikmets R. Complete characterization of the human
apparatus to lamellar granules in human upper epidermal kera-
92. Akiyama M. Pathomechanisms of harlequin ichthyosis and
ABCA12 maintains the epidermal lipid permeability barrier by
94. Akiyama M. Harlequin ichthyosis and other autosomal reces-
sive congenital ichthyoses: the underlying genetic defects and
95. Thomas AC, Tattersall D, Nogrette EE, O’Toole EA, Kelsell DP.
Premature terminal differentiation and a reduction in specific
proteases associated with loss of ABCA12 in Harlequin
96. Smyth I, Hacking DF, Hulton AA, Mukhamedova N, Meikle PJ,
Ellis S, et al. A mouse model of harlequin ichthyosis delin-
teates a key role for Abca12 in lipid homeostasis. PLoS Genet.
2008;4:e1000192.
97. Yanagi T, Akiyama M, Nishihara H, Ishikawa J, Sakai K, Miya-
mura Y, et al. Self-improvement of keratinocyte differentiation
defects during skin maturation in ABCA12-deficient mouse
98. Thomas AC, Cullup T, Norgett EE, Hill T, Barton S, Dale BA,
et al. ABCA12 is the major harlequin ichthyosis gene. J Invest
100. Castiglia D, Castori M, Pisaneschi E, Sommi M, Covaciu C,
Zambonu G, et al. Trisomic rescue causing reduction to
homozygosity for a novel ABCA12 mutation in harlequin
ing a novel nonsense mutation underlie harlequin ichthyosis.
102. Akiyama M, Titeux M, Sakai K, McMillan JR, Tonasso L, Calvas P,
et al. DNA-based prenatal diagnosis of harlequin ichthyosis and
103. Akiyama M, Sakai K, Hatamochi A, Yamazaki S, McMillan JR, Shimizu H. Novel compound heterozygous nonsense and
missense ABCA12 mutations lead to nonbullous congenital
Clinical and Molecular Findings in 45 Cases. Arch Dermatol.
105. Harvey HB, Shaw MG, Morrell DS. Perinatal management of
106. Haftek M, Gambazard F, Dhouailly D, Réano A, Simon M,
Lachaux A, et al. A longitudinal study of a harlequin infant
presenting clinically as non-bullous congenital ichthyosiform
108. Dale BA, Holbrook KA, Fleckman P, Kimball JR, Brumbaugh S,
Sybert VP. Heterogeneity in harlequin ichthyosis, an inborn
error of epidermal keratinization: variable morphology and
structural protein expression and a defect in lamellar granules.
109. Milner ME, O’Guin WM, Holbrook KA, Dale BA. Abnormal
110. Van Gysel D, Lijnen RL, Moekti SS, de Laat PC, Oranje AP. Col-
lobion baby: a follow-up study of 17 cases. J Eur Acad Dermatol
111. Buyse L, Graves C, Marks R, Wiljesyesekerka K, Alfaham M, Finlay AY. Collobion baby dehydration: the danger of high transepi-
112. Toribio J, Fernández Redondo V, Peteiro C, Zulaica A, Fabi-
113. Traupe H, Colde G, Happle R. Autosomal dominant lamellar
114. Larrègue M, Guillet G. Bébé collodion révélant une trichoth-
éctodermal dysplasia with features of a collodion membrane.
115. Traupe H. The ichthyosis. A guide to clinical diagnosis, genetic
116. Reed WB, Herwick RP, Harville D, Porter PS, Conant M. Lamel-
lar ichthyosis of the newborn A distinct clinical entity: its

