Letters to the Editor

may not be satisfactory and repair of this artery may be necessary.

References

Cutaneous Chloromas as the Presenting Feature of Acute Myeloid Leukemia in a Child

E Roche-Gamón,* I Febrer-Bosch,* A Verdeguer,* and V Alegre de Miquel*
*Departamento de Dermatología, Hospital General Universitario de Valencia, Spain
*Oncología Pediátrica, Hospital Universitario La Fe, Valencia, Spain

To the Editor:

We describe the case of a 10-month-old boy, born to healthy parents after a dichorionic-diamniotic twin pregnancy. He was referred to our service because, from 1 week earlier, he had developed multiple papules and erythematous nodules that converged, forming asymptomatic infiltrated plaques of several centimeters. The lesions had started on the head (forehead, cheeks, and retroauricular area) (Figure 1), and rapidly spread to the trunk and limbs (Figure 2). According to the mother, some days earlier, he had presented a large plaque on the scalp that had disappeared spontaneously in a few days, without leaving any sequelae. In addition, there were enlarged laterocervical and inguinal lymph nodes, measuring 1 cm, in the surrounding area, but no constitutional symptoms.

Five days later, the head and trunk lesions had diminished notably without treatment, although numerous papules had appeared on the limbs. Initially and during follow-up, various laboratory tests, a chest X-ray, and an abdominal ultrasound were done, but all findings were normal or within normal limits. A deep punch biopsy was taken, with histopathological study showing a predominantly vascular superficial and deep dermal infiltrate, arranged linearly and dissecting the collagen bundles (Figure 3). The epidermis was intact; the dermis showed a tumor-free, grenz zone. The infiltrate was formed by cells of undifferentiated appearance, with large hyperchromatic nuclei and numerous atypical mitoses. Immunohistochemically, the cells were positive for myeloperoxidase, lysozyme, CD43, and CD68, but were negative for CD56, tumor cell labeling index, CD123, terminal deoxynucleotidyl...
Letters to the Editor

Specific leukemic infiltrates may present in various morphological forms such as papules, nodules, purpura, ulcerations, and more rarely, blisters. They may found at any site, including in areas of trauma or scars, but are more common on the head, neck, or trunk.1 LC is uncommon in childhood, with only a few cases published in children.2-4 It appears more often in congenital leukemia (25%-30% of cases).2,3 As in adults, it is associated with acute myeloid leukemia,4 particularly in carriers of the monocyte markers M3 and M5 (10%-30%).

There is a strong association between specific cutaneous infiltration and the presence of leukemia in other extramedullary sites (cerebrospinal fluid, spleen, liver, lymph nodes, and gums). Unlike adults, in whom LC is associated with a severe prognosis, in children it does not alter the natural progression of the disease.

References

Effectiveness of Topical Application of Nitroglycerin Spray to Increase Survival of Cutaneous Flaps and Grafts

P Coto-Segura, J Ingelmo, T Alonso, P Sánchez-Sambucety, and MA Rodriguez-Prieto
Servicio de Dermatología, Hospital de León, León, Spain

To the Editor:
Necrosis of surgical sites is a common complication in dermatological surgery that can lead to clearly obvious cosmetic blemishes, an increased risk of infection, and further surgery on occasions. Various factors are implicated in its development,1 but the main one is insufficient blood flow resulting from arterial insufficiency. Trials have been conducted with different systemic treatments, such as nifedipine,2 pentoxiphylline, and allopurinol, as well as topical treatments such as prostaglandins,3 minoxidil,4 and nitroglycerin,5-7 in order to enhance the survival of flaps and grafts, with conflicting results found in the dermatological literature.8 Nitroglycerin is a potent arterial and venous vasodilator that enhances local

Figure 3. Dense cellular infiltration of the dermis and subcutaneous cell tissue. (Hematoxylin-eosin, ×4).