Epidemiology of Pediatric Dermatologic Surgery: A Retrospective Study of 996 Children

V. López, a,* J.M. Martín, a C. Monteagudo, b and E. Jordá a

a Servicio de Dermatología, Hospital Clínico Universitario, Valencia, Spain
b Servicio de Anatomía Patológica, Hospital Clínico Universitario, Valencia, Spain

Manuscript received August 10, 2009; accepted for publication February 2, 2010

Keywords
Pediatric dermatology; Epidemiology; Surgery; Children

Abstract

Objective: To describe the epidemiology of skin surgery performed in the dermatology department of Hospital Clínico Universitario in Valencia, Spain, on children up to 16 years of age. The study analyzed a 9-year period.

Materials and method: A retrospective review was performed of all tissue excisions and biopsies taken between January 1, 1990, and December 31, 2007, from patients up to 16 years of age seen in the dermatology department of Hospital Clínico Universitario. The following data were collected: age, sex, surgical site, and histopathologic diagnosis.

Results: Between 1990 and 2007, 33,840 lesions were analyzed histologically; 996 of the lesions (2.94%) were from patients up to 16 years of age, of whom 502 (50.40%) were girls and 484 (49.60%) were boys. The mean age was 11.06 years. The majority (47.39%) of excisions were performed in children of 12 to 16 years. The distribution of the remainder by age groups was as follows: <1 year, 34 excisions (3.41%); 1 to <4 years, 66 (6.63%); >4 to <8 years, 154 (15.46%); and >8 to <12 years, 270 (27.11%). The most common diagnosis was melanocytic nevus (50.20%), followed by pilomatrixoma (4.62%), capillary angioma (3.61%), epidermal cyst (3.61%), Spitz nevus (3.31%), and pyogenic granuloma (3.11%).

Conclusion: Dermatologic surgery in patients up to 16 years of age accounted for a small percentage of the overall dermatologic surgery in our hospital; the majority of children were in the 12 to <16 year age group. Most children had benign lesions, with melanocytic nevus being by far the most common diagnosis. The majority of lesions were on the trunk, followed by the head and neck. In conclusion, compared with the literature reviewed, ours is the only series on dermatologic surgery in children. It is of interest because it defines the most common conditions in these patients.

© 2009 Elsevier España, S.L. and AEDV. All rights reserved.

*Corresponding author.
E-mail address: veronica_17@live.com (V. López).
Introduction

Skin surgery is a branch of dermatology that surgically treats skin, soft tissue, mucosa, and skin appendage disorders that cannot be resolved by medical treatment alone.

A number of features set skin surgery apart from other medical and surgical specialties. Most operations are performed on an outpatient basis, for example, using local anesthesia, and are therefore very well tolerated. Because these operations are generally minimally invasive, they ensure maximum preservation of surrounding healthy tissue and consequently result in considerably improved outcomes and shorter recovery times.

Skin disorders in children also differ from those seen in adults because of the histologic, physiologic, and immunologic characteristics of children’s skin. Pediatric dermatology is therefore an emerging and growing specialty within the fields of pediatrics and general dermatology. Skin disorders account for between 6% and 24% of all consultations in pediatric clinics, with an increasing incidence detected in recent years.1-3

The literature contains many reports of the prevalence of pediatric skin disorders in dermatology clinics. In developed countries, the most common reason for consultation is atopic dermatitis, followed by infectious diseases and melanocytic nevi.4-21 Although very interesting studies have been conducted on the epidemiology of general disorders encountered in pediatric dermatology practices, in our search of the literature, we found no specific analyses of the epidemiology of pediatric skin diseases requiring surgical treatment, hence our decision to perform such a study. Our aim was therefore to perform an epidemiologic analysis of skin lesions that were biopsied or excised in patients aged 16 years or younger at the dermatology department of Hospital Clínico Universitario in Valencia, Spain, over a period of 9 years (1999-2007).

Material and Methods

Setting

The study was performed in Hospital Clínico Universitario in Valencia, Spain, whose dermatology department is a referral center for 16 health care centers and 1 regional hospital. On average, 36 500 visits (first and subsequent visits) a year are received and 3700 excisions and biopsies are performed. Approximately 11% of the patients seen are aged 16 years or younger. The patients are referred...
Epidemiology of Pediatric Dermatologic Surgery: A Retrospective Study of 996 Children

Inclusion Criteria

From the database of the pathology department of the hospital we extracted all histopathology reports corresponding to patients aged 16 years old or younger with skin tumors or inflammatory skin conditions who had undergone a diagnostic biopsy or excision in our department.

Data Collection

In order to compile epidemiologic statistics for the study population, we retrospectively reviewed the histopathology reports on all biopsies and excisions performed in patients aged 16 years or younger with skin lesions seen by our department between January 1, 1999 and December 31, 2007 (9 years). The following information was collected in each case: age and sex of patient, lesion site, and histopathologic diagnosis.

Statistical Analysis

The variables were analyzed using the STATA 9 software package. Differences between proportions were evaluated using the χ² test.

Results

In total, 112,816 patients were seen between January 1, 1999 and December 31, 2007, not including patients treated at the specialist outpatient clinic attached to the hospital; 12,833 (11.37%) were 16 years or younger (Figure 1). The mean number of patients treated annually was 1425 (range, 1130-1680).

In the 9 years covered by the study, 33,840 skin lesions were analyzed histologically (Table 1). Of these, 996 (2.94%) were from patients aged 16 years or younger. Children who underwent a surgical procedure accounted for 7.7% of all the patients treated in the department; the corresponding percentage for adults was 32.8% (P<.001). Table 1 shows the comparative figures for excisions performed in adults and children.

Of the 996 specimens analyzed, 502 (50.40%) were from girls aged 16 years or younger and 494 (49.60%) were from boys in the same age range (Figure 2).

The mean age of the patients was 11.06 years. Most excisions (n=472, 47.39%) were performed in patients aged 12 to 16 years. Only 34 excisions (3.41%) were performed in infants aged 1 year or younger. The corresponding figures for the other age groups were 66 excisions (6.63%) in children aged >1 to ≤4 years, 154 (15.46%) in children aged >4 to ≤8 years, and 270 (27.11%) in children aged >8 to ≤12 years.

The most common excision sites were the trunk (314 excisions, 31.52%), the lower limbs (n=216, 21.69%), the head and scalp (n=257, 25.8%), the upper limbs (n=163, 16.37%), and the genitals (n=18, 1.81%) (Table 2).

The most common histologic diagnoses were melanocytic nevus (50.20%), pilomatricoma (4.62%), capillary angioma...
epidermal cyst (3.61%), Spitz nevus (3.11%) (Table 3). Histopathology showed that 9.3% and 3% of the lesions were due to inflammatory disorders and infectious conditions, respectively. The most common diagnosis in the infectious lesion group was viral warts, followed by molluscum contagiosum. The most common diagnoses by age group are shown in Table 4.

As already mentioned, melanocytic nevus was the most frequent diagnosis in our series. Among the lesions analyzed, the most common type was compound melanocytic nevus (n=267, 53.4%), followed by intradermal melanocytic nevus (n=122, 24.4%), junctional melanocytic nevus (n=54, 10.8%), Spitz nevus (n=33, 66%), blue nevus (n=12, 2.4%), and compound nevus (n=3, 0.6%). Histologic features of dysplasia were found in 44 lesions (8.8%); specifically, 30 compound melanocytic nevi, 10 junctional melanocytic nevi, and 4 halo nevi.

A high percentage of the lesions analyzed (79.92%, 796/996) were tumors. Of these, 786 (98.74%) were benign and 10 (1.26%) were malignant. The most common type of tumors were of melanocytic origin (n=512, 64.32%) and within this group, melanocytic nevi were strongly predominant (97.65%). The second most common type were vascular
neoplasms (10%). The predominant tumors in this group were capillary angiomas (4.52%) and pyogenic granulomas (3.89%, n=31). The third most common type was adnexal neoplasm (6.03%), among which pilomatricomas predominated.

Tumor lesions other than melanocytic nevi accounted for 37.2% (n=296) of the tumors analyzed; of these only 10 (1.26% of all tumor lesions) were malignant. Melanoma was the most common malignant primary skin tumor. Three of the 4 melanomas identified were superficial and the fourth was a nodular spitzoid melanoma. The other malignant tumors identified were 1 cutaneous leiomyosarcoma, 1 squamous cell carcinoma, 1 micronodular basal cell carcinoma, 1 dermatofibrosarcoma protuberans, and 1 cutaneous lymphoma.

Also noteworthy was the detection of several rare skin conditions, namely 3 neurothekeomas, 1 eccrine angiomatous hamartoma, 1 elastic nevus, 1 nevus lipomatosus cutaneous superficialis, 1 porokeratotic eccrine duct, 1 syringocystadenoma, 1 trichoblastoma, and 1 granular cell tumor.

Table 4
Histologic Diagnosis by Age Group

<table>
<thead>
<tr>
<th>Age</th>
<th>Most Common Diagnoses (No.)</th>
<th>Noteworthy Diagnoses (No.)</th>
<th>Total No. of Diagnoses (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>>12-≤16 y</td>
<td>Compound MN (140)</td>
<td>SSM (2)</td>
<td>472 (47.39)</td>
</tr>
<tr>
<td></td>
<td>Intradermal MN (91)</td>
<td>DFS protuberans (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dysplastic MN (30)</td>
<td>BCC (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Epidermal cyst (23)</td>
<td>Osteochondroma (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Junctional MN (20)</td>
<td>Poroma (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pyogenic granuloma (14)</td>
<td>Syringocystadenoma papilliferum (1)</td>
<td></td>
</tr>
<tr>
<td>>8-≤12 y</td>
<td>Compound MN (58)</td>
<td>SSM (1)</td>
<td>270 (27.11)</td>
</tr>
<tr>
<td></td>
<td>Intradermal MN (23)</td>
<td>Nerve sheath myxoma (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Capillary angioma (17)</td>
<td>Neurothekeoma (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pilomatricoma (15)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pyogenic granuloma (10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤8 y</td>
<td>Compound MN (23)</td>
<td>Neurothekeoma (2)</td>
<td>154 (15.46)</td>
</tr>
<tr>
<td></td>
<td>Pilomatricoma (16)</td>
<td>SCC (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Capillary angioma (8)</td>
<td>Lymphangiomas (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spitz nevus (7)</td>
<td>Nodular Spitzoid melanoma (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Junctional MN (7)</td>
<td>Porokeratotic nevus (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Granular cell tumor (1)</td>
<td></td>
</tr>
<tr>
<td>>1-≤4 y</td>
<td>Pilomatricoma (10)</td>
<td>Trichoblastoma (1)</td>
<td>66 (6.63)</td>
</tr>
<tr>
<td></td>
<td>Compound MN (10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spitz nevus (8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pyogenic granuloma (4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤1 y</td>
<td>Pyogenic granuloma (3)</td>
<td>Cutaneous leiomyosarcoma (2)</td>
<td>34 (3.41)</td>
</tr>
<tr>
<td></td>
<td>Leiomysarcoma (2)</td>
<td>Aplasia cutis (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Compound MN (2)</td>
<td>Rudimentary digit (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intradermal MN (2)</td>
<td>Plantar fibromatosis (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pilomatricoma (2)</td>
<td>Kaposiform hemangioendothelioma (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Epidermal cyst (2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: BCC, basal cell carcinoma; DFS, dermatofibrosarcoma; MN, melanocytic melanoma; SSM, superficial spreading melanoma.

Discussion

We found that 11.37% of all the patients treated in our dermatology department in the period studied were 16 years old or younger. This pediatric caseload is considerable and similar to figures reported by Goh et al.° and Casanova et al..

We also performed an epidemiologic study of skin lesion biopsies and excisions performed in pediatric patients in the 9 years covered by the study. Proportionally, very few children underwent surgery compared to adults. The difference is possibly due to the fact that, where possible, excisional surgery is often delayed until the patient is older and more likely to cooperate, as has been observed by Vergara et al.. Another possible explanation is that the majority of lesions in pediatric patients are benign and can therefore be clinically monitored, without the need for excision. This might explain why we detected an increase in the proportion of patients undergoing surgery in older age ranges. Histology studies were performed in 10.04%
of patients aged 0 to ≤4 years, in 14.46% of those aged >4 to ≤8 years, in 27.1% of those aged 8 to ≤12 years, and in 47.4% of those aged 12 to 16 years (P<.001 for trend). A third of the adult patients treated by our department underwent surgery. This may seem surprisingly high but it should be noted that a large number of patients are referred to our department for the excision of tumor lesions or for confirmatory biopsy.

There was a slight preponderance of girls over boys in our series, a finding which is consistent with reports from other studies.8,19

The trunk was the most common biopsy site. However, if we consider that the face accounts for just 4% of the total body surface, proportionally, more lesions were excised from the face than from any other location. This might be because more patients seek medical advice for facial lesions due to esthetic concerns.

It is difficult to compare our results with data from other studies as these have analyzed smaller series with different demographic characteristics. Nevertheless, melanocytic nevus was also the most common diagnosis detected by Vergara et al15 in a 2-year study of 179 pediatric patients who underwent surgery for skin lesions. Melanocytic nevus is now a common reason for consultation partly because of a greater awareness among the general population thanks to skin cancer prevention campaigns. We believe that the incidence of these lesions may decrease thanks to skin cancer prevention campaigns. We believe that the incidence of these lesions may decrease thanks to skin cancer prevention campaigns.

Table 1. Distribution of lesions by location and age

Conclusions

Skin surgery in patients aged 16 and younger accounts for only a small proportion of all surgery performed in our department. As was to be expected, most of the operations were performed in patients aged between 12 and 16 years. Consistent with findings from other series, there were slightly more girls than boys among our patients. The trunk, followed by the head and scalp, was the most common lesion site. Finally, the majority of lesions analyzed in pediatric patients were benign and the most common diagnosis by far was melanocytic nevus.

In conclusion, although numerous studies have provided very interesting findings on the epidemiology of general disorders encountered in pediatric dermatology departments, our series is the largest published to date on skin surgery in pediatric patients.

Conflict of Interest

The authors declare that they have no conflict of interest.

References

