Allergic Contact Dermatitis To Temporary Henna Tattoos

A Ramírez-Andreo, a A Hernández-Gil, a C Brufau, a N Marín, a N Jiménez, a J Hernández-Gil, b J Tercedor, c and C Soria a

a Servicio de Dermatología, Hospital General Universitario Reina Sofía, Murcia, Spain
b Hospital Universitario San Cecilio, Granada, Spain
c Hospital Universitario Virgen de las Nieves, Granada, Spain

Abstract. Introduction. In the last years there have been increasing reports of adverse cutaneous reactions to temporary black henna tattoos. Black henna does not exist naturally, it is obtained from original henna after the addition of other compounds, among them paraphenylenediamine (PPD), that darken it and facilitate the process of tattooing. Paraphenylenediamine is an aromatic compound that presents cross-reactions with other components that have a benzene ring in their molecular structure. Many of these products may be present in the daily life of any person.

Material and methods. We reviewed patients that have shown erythema, inflammation and/or vesiculation in a previously tattooed area. The patients have undergone a temporary tattoo in street stalls during the summer period (2004-2005). A total of five patients were included, there were four men and one woman with a mean age of 13 years (3-34) and a mean latency period of 9.4 days (5-14). Black ink and plastic stencils were used to perform the tattoo. None of the patients has had previous contact with hair dyes or tattoos and none of them referred a personal history of atopic dermatitis. Patch testing was carried out using the standard set of the Spanish Group for Research in Contact Dermatitis [GEIDC] (TRUE TEST®, Pharmacia, Hillerod, Denmark), with readings at 48 and 96 hours.

Results. Sensitization to PPD is confirmed in three patients, one of them was also sensitized to formaldehyde. Hypopigmented scars persist in three patients.

Conclusions. Black henna pseudotattoos are a source of sensitization to PPD with potential severe consequences in a medium to long term. Currently there is no specific legislation with respect to the practice of this type of tattoos in our country.

Key words: Lawsonia plant, tattoo, 4-paraphenylenediamine, henna.

Correspondence: Antonio Ramírez Andreo
Constantino López, 13
30840 Alhama de Murcia
Murcia, Spain
E-mail: antonio.ramirez.andreo@gmail.com

Manuscript accepted for publication September 15, 2006.
Introduction

Henna is a natural reddish pigment obtained from the dried leaves of the plant *Lawsonia inermis*. When mixed with water it forms a paste that can be applied directly to the skin. Darker skin tones can be obtained with longer durations of contact. Cases of true sensitization to natural henna are extremely rare.1 Fake tattoos using black henna are increasingly common in holiday resorts, especially during summer. This seemingly harmless practice, which does not require specialized instruments or knowledge, is becoming a risky practice, as evidenced by the many reports of adverse cutaneous reactions due mainly to *p*-phenylenediamine (PPD),1-17 a component of commercial henna products. We present 5 cases of adverse reaction to black henna, and in 3 of these we show sensitization to PPD.

Results

Three cases proved strongly positive for PPD (Figures 1 and 2) and 1 was sensitive to both PPD and formaldehyde (Figure 3). The remaining 2 patients refused to undergo patch testing (table).

Figure 1. Multiple erythematous vesicles in the area of contact with *p*-phenylenediamine (Case 1).

Figure 2. Intense *p*-phenylenediamine positivity (Case 5).

Figure 3. Marked *p*-phenylenediamine positivity and moderate formaldehyde positivity (Case 3).

Figure 4. Depigmented stain on the previously tattooed area (Case 1).
Case 1

A 3-year-old girl presented with intense inflammation in the area of the black henna tattoo on the left arm 2 weeks after the tattoo was applied. On consultation, a sharply delimited residual vitiligo patch could be observed (Figures 1 and 4).

Case 2

A 7-year-old boy consulted because of a hypopigmented plaque on his right arm after presenting with intense erythema and exudation during the 2 weeks after application of the tattoo. He did not undergo patch testing (Figure 5).

Case 3

A 9-year-old boy presented with multiple pruriginous vesicles on the black henna tattoo on his back 1 week after the tattoo was applied. The symptoms resolved with topical corticosteroids (Figures 3 and 6).

Results

<table>
<thead>
<tr>
<th>Case 1</th>
<th>Case 2</th>
<th>Case 3</th>
<th>Case 4</th>
<th>Case 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y</td>
<td>3</td>
<td>7</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>Sex</td>
<td>F</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>Time</td>
<td>2 weeks</td>
<td>2 weeks</td>
<td>1 week</td>
<td>1 week</td>
</tr>
<tr>
<td>Symptoms</td>
<td>Erythema and vesicles</td>
<td>Erythema and exudation</td>
<td>Vesicles</td>
<td>Erythema and vesicles</td>
</tr>
<tr>
<td>Outcome</td>
<td>Hypo</td>
<td>Hypo</td>
<td>Resolution</td>
<td>Resolution</td>
</tr>
<tr>
<td>Patch test</td>
<td>PPD: +++/+++</td>
<td>NP</td>
<td>PPD: +++/+++</td>
<td>NP</td>
</tr>
</tbody>
</table>

Abbreviations: F, Female; M, Male; Hypo, hypopigmentation; NP, not performed; PPD, p-phenylenediamine.
Case 4

A 12-year-old boy consulted because of erythema and vesicles on his left leg 1 week after the tattoo was applied. Symptoms resolved spontaneously after 2 to 3 weeks. He did not undergo patch testing (Figure 7).

Case 5

A 34-year-old man presented with vesicles on an erythematous base on his back 5 days after henna was applied. When the inflammation subsided, a sharply delimited hypopigmented stain was visible (Figures 2, 8, and 9).

DISCUSSION

Henna powder is obtained by drying and grinding the leaves of the bush L. inermis, which is grown in North Africa and Asia. It is a reddish brown pigment that has been used for thousands of years in Muslim, Hindu, and other diverse cultures to dye the hair and adorn the body and nails; it is known as Mehandi. The tattoo is performed by applying henna in the form of a paste directly on the skin. It is necessary to wait 12 hours for the active ingredient, lawsone, to imprint the characteristic color.2 There have been very few reports of sensitization to natural henna.

Henna can be darkened using additives such as lemon juice, beet root juice, nut shell, sugar, p-toluenediamine, and PPD.3,4 The latter also shortens the fixing process to 1 to 2 hours, improves the outline of the tattoo, and ensures that it lasts longer.

PPD is a known trigger of allergic contact dermatitis and one of the main sensitizing agents associated with permanent and semipermanent hair dyes.5 It is believed to act on the epidermis in the same way as prohapten and must be converted to benzoquinone before triggering a type IV hypersensitivity process.5 European Union legislation permits a maximum concentration of PPD of 6% in hair dyes and the direct application of PPD to the skin, eyelashes, and eyebrows is prohibited.6 Black henna kits do not specify the PPD concentration. In 2 studies analyzing commercial black henna samples, Brancaccio et al7 discovered a PPD concentration of 15.7% after high-performance liquid chromatography, and Chung et al8 found that PPD was a majority element using mass spectrometry.

Whereas hydrogen peroxide is used in hair salons to inactivate PPD in hair dyes, this practice is not used for black henna in the tattooing process. The method of applying fake henna tattoos, in which templates containing plastics and glues are used followed by occlusion, enhances the penetration of PPD and can in turn cause a reaction to other compounds such as latex, resin, and thiuram.9,10 We do not know the significance of the fact that one of our patients was also sensitized to formaldehyde; this may be a mere coincidence or the result of using a formaldehyde-containing substance during or after application of the tattoo.

Sensitization to PPD is important for 2 reasons. First, its ubiquity—it is present in substances such as hair dye, eye shadow, plastics, rubber, printing ink, and developing fluid.9

Second, there may be cross-reactions with other structurally similar classes of compounds,9-11 including the following: the azo compounds present in many textile dyes, mainly Disperse Orange 3 and Disperse Yellow 3; the sulfonamides, an extensive group including antibiotics, glucose-lowering agents, and drugs to treat inflammatory bowel disease; p-aminobenzoic acid (PABA), a common component of sunscreens; benzocaine and procaine, which
are both PABA-derived anesthetics; and some hair dyes with a structure that is similar to that of \(p\)-toluenediamine or \(p\)-aminodiphenylamine.\(^{18}\)

Cross-reactivity with these substances could stem from a common intermediate metabolite, benzoquinone, although other oxidative groups with a similar structure may be present at position 4 of the benzene ring.\(^{12}\)

Patch testing was carried out using the components of the TRUE TEST (Pharmacia, Hillerod, Denmark). Given the marked positivity that is characteristic of sensitization to PPD, some authors recommend using increasing concentrations (0.01%, 0.1%, and 1%).\(^{13}\)

We believe that allergic contact dermatitis to black henna is a serious problem due to its possible impact on the daily life of sensitized patients. This was the case of 2 children with a history of rash on the area where a black henna tattoo had been applied who were admitted to the intensive care unit after using hair dye.\(^{14}\) We consider it necessary to highlight the age of our patients, as 4 were children.

It is important to remember that an initial inflammatory reaction is commonly followed by hyperpigmented or hypopigmented residual lesions that may take a long time to remit and may even leave hypertrophic scars.\(^{15}\)

To conclude, we believe that temporary black henna tattooing should be controlled by health authority legislation to minimize the appearance of new cases of reaction to PPD and the serious and permanent consequences we have presented.

Conflicts of Interest
The authors declare no conflicts of interest.

References