Original Article

Study of Prevalence and Attitudes on Smoking in Patients on Continuous Home Oxygen Therapy. Toma Study

Carlos A. Jiménez-Ruiz, a, * Pilar de Lucas Ramos, b Salvador Díaz Lobato, c Teresa García Carmona, d Concepción Losada Molina, e Antonio Martínez Verdasco, f José Miguel Rodríguez González-Moro, b Juan Luís Rodríguez Hermosa, g Segismundo Solano Reina, b Enrique Zamora García, h Ali Droghan, i Javier de la Cruz Labrado, i and Inmaculada Ramos García i

Unidad Especializada en Tabaquismo, Comunidad de Madrid, Spain
b Hospital General Gregorio Marañón, Madrid, Spain
c Hospital Ramón y Cajal, Madrid, Spain
d Hospital Puerta de Hierro, Majadahonda, Madrid, Spain
e Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Madrid, Spain
f Hospital La Paz, Madrid, Spain
g Hospital San Carlos, Madrid, Spain
h Hospital de la Princesa, Madrid, Spain
i Carburos-Médica, Air Products, Madrid, Spain

ABSTRACT

Introduction: The objective of this study was to analyse the prevalence, attitudes and characteristics of smoking in the population of patients subjected to Long Term Home Oxygen Therapy (LTOT) in the Community of Madrid.

Patient and methods: A representative sample of 845 subjects (461 male, 46%) was obtained from a total of 11,174 who fulfilled the inclusion criteria. The mean age was 78.25 years (95% Confidence Interval, CI, 77.55-78.95; SD=10.36). A descriptive cross-sectional study was conducted based on questionnaires as well as CO-oximetry.

Results: Forty-eight subjects were smokers (5.7%; 95% CI, 4.3-7.5) while 438 (51.8%; 95% CI, 48.5-55.2) were ex-smokers. The percentage of active smokers was higher in the 60 years or less subject group (χ^2; P<.001). The large majority (75%) of smokers were men, their proportion being significantly higher than that of current non-smokers (χ^2; P<.003). The mean score in the Fagerström Test was 3.6. More than 65% of smokers had their first cigarette within 30 min of getting up in the morning, and 45% of these were in a preparation stage. Seventeen percent of these subjects said they had not received advice on quitting smoking.

Conclusions: There is a high rate of smoking in patients on LTOT, with a higher probability of males and younger subjects continuing to smoke. There is a high level of physical dependence on nicotine.

© 2010 SEPAR. Published by Elsevier España, S.L. All rights reserved.

Palabras clave:
Tabaquismo
Oxigenoterapia crónica domiciliaria
Dependencia nicotina

ARTICLE INFO

Article history:
Received January 24, 2010
Accepted July 29, 2010

Keywords:
Smoking
Long term home oxygen therapy
Nicotine dependence

Estudio de la prevalencia y actitudes sobre tabaquismo en pacientes sometidos a oxigenoterapia crónica domiciliaria. Estudio toma

Resumen

Introducción: El objetivo de este estudio ha sido analizar la prevalencia, las actitudes y las características del tabaquismo en la población de pacientes sometidos a oxigenoterapia crónica domiciliaria (OCD) en la Comunidad de Madrid.

Pacientes y métodos: De un total de 11,174 sujetos que cumplían los criterios de inclusión, se obtuvo una muestra representativa de 845 sujetos. De ellos 461 (54,6%) eran hombres. La edad media fue de 78,25 años...
Introduction

Long-term home oxygen therapy (LTOT) is the treatment of choice for chronic respiratory failure. Two major studies showed that LTOT in hypoxaemic patients with chronic obstructive pulmonary disease (COPD) significantly improves survival and quality of life.\(^6\)\(^7\) However, the efficacy of this treatment is related to its proper use. The different regulations state that the use of this type of therapy requires appropriate prescription, adequate compliance, and the absence of tobacco consumption.\(^3\)

At present, population studies are available that examine the prevalence and characteristics of smoking (degree of physical dependence on nicotine and the stage of quitting smoking) in subjects with COPD. These studies have found that the prevalence of smoking among this group of subjects is high and, moreover, that smokers with COPD have a higher degree of physical dependence on nicotine than smokers without COPD.\(^4\)\(^5\) However, there are no significant differences in the stages of quitting smoking that both groups are in.\(^4\)\(^5\) These data have helped to establish new treatment strategies for these patients.\(^6\)\(^7\)

Several studies have examined the prevalence of smoking in patients undergoing LTOT. Some years ago, Cornette et al. studied a group of 250 patients and found that 8.4% of them considered themselves as active smokers.\(^4\) However, when the analysis included the determination of urinary cotinine levels, this figure increased to 17%.\(^8\) More recently, a study of the health areas making up the Community of Madrid, which included a total of 860 patients, found that up to 11% of patients with LTOT were active smokers.\(^8\)\(^9\) This figure is higher than that found by a research group in Turkey, who, following a similar methodology, found 6.9% of active smokers in the group of subjects they studied.\(^6\)\(^7\) In view of these data, it appears that prevalence rates may vary depending on the methodology used for the study and that there is variability in each of the areas analysed.

However, although we have data on smoking prevalence in subjects treated with LTOT, there are no large population studies analysing smoking characteristics in this group of patients. We believe that understanding these data would help this therapy to be used more appropriately while improving overall health care for these patients.

The main objective of this study was to analyse the prevalence, attitudes and characteristics of smoking in patients undergoing LTOT in the Autonomous Community of Madrid.

Materials and Methods

Inclusion and Exclusion Criteria

The inclusion criterion was patients over 40 years of age living in the Autonomous Community of Madrid undergoing LTOT for six or more months due to chronic respiratory failure. The exclusion criteria were associated mechanical ventilation, and lack of physical and/or mental capacity to undergo the survey and CO-oximeter study. The study population came from the records of all LTOT patients in the region of the Autonomous Community of Madrid. At the start of the study (March 2008) a total of 1174 subjects met the inclusion criteria.

Method

A cross-sectional study based on questionnaires and CO-oximetry in patients’ homes was performed after approval in January 2008 by the clinical studies ethics committee of the Hospital General Universitario Gregorio Marañón (Gregorio Marañon University General Hospital) in Madrid. All participating patients gave their written consent.

The field work was carried out by specialised health personnel, who phoned patients before visiting them at their homes. To avoid selection bias, all households in the sample were contacted. The field study was carried out between April and September 2008.

During home visits, the health professionals used the following intervention protocol:

- Identify the subject’s smoking status. Three possible categories were considered: Non-smoker, subjects who had never smoked; Ex-smokers, subjects who had gone 6 months or more without smoking; and Smokers, subjects who declared they smoked whatever the type or amount of tobacco.
- Carry-out the CO-oximetry using a CO-oximeter (Micro Smokerlyzer®, Bedfont Scientific, England) to determine carbon monoxide (CO) levels in exhaled air.\(^11\) A CO level greater than 4 ppm was considered indicative of a smoker.
- Observe attitudes towards tobacco use and analyse the attempts to stop smoking. All subjects were questioned on their reasons for stopping smoking, if they had been advised by a health professional, if they had made any attempt to stop, and whether they had used scientific treatments to stop smoking.
• Determine which stage of stopping smoking they were in. The Prochaska transtheoretical model was used.12
• Determine the degree of physical dependence on nicotine using the Fagerström test.13

\textbf{Statistical Analysis}

A database was configured in the SPSS version 13.0 software, within Windows, to investigate the data (SPSS Inc., Chicago, Illinois, USA). A descriptive study was conducted of the analysed variables, with the quantitative variables expressed as mean (standard deviation) and qualitative variables as proportions with their absolute frequencies, and a calculation of the 95\% confidence interval (CI). The significance level considered for all tests was 5\% in a bilateral contrast. Differences between groups were assessed by the χ^2 test for qualitative variables and with the student t-test for quantitative variables, or appropriate non-parametric tests if they did not comply with the conditions of use.

A binary logistic regression model was used to study the association between continued smoking in patients receiving home oxygen therapy and possible risk factors. The stepwise analysis carried out followed the Wald method.

\textbf{Results}

We were able to visit 925 patients (82.3\%) out of the total of 124 patients. The 199 losses were due to: 64 (5.7\%) deaths, 122 (10.9\%) could not be located during the study period (did not answer the phone, moved home or were admitted to hospital), and 13 (1.2\%) had finished the oxygen treatment. Of the 925 visited, 35 did not wish to participate (3.8\%), leaving a total of 890 (96.2\%). There were 45 cases (4.6\%) excluded due to not meeting the inclusion criteria. Finally, 845 valid cases were obtained (75.2\% of the randomly chosen patients), 0.7\% more than the necessary figure needed most (table 3).

\textbf{Sample Characteristics}

The final sample of 845 patients was studied, of whom 461 (54.6\%) were male. The mean age was 78.25 years [95\% CI, 77.55-78.95; SD=10.36]. The prevalence of smoking among study subjects was 5.7\% (48/845) [95\% CI, 4.3-7.5\%]. A total of 438 patients stated that they were ex-smokers (51.8\%) [95\% CI, 48.5-55.2\%] while 359 reported never having smoked (42.5\%) [95\% CI, 39.2-45.8\%]. Of the 48 cases found to be smokers, only 3 (6\%) did not initially declare themselves as smokers in the interview. They were classified as smokers due to the CO-oximetry reading. One of these three revised their initial statement, while the other two continued in their declarations as ex-smokers. In both cases, false positives in the CO-oximetry were ruled out. As a result, the smoking prevalence in our group increased from 5.3\% (45/845) to 5.7\% (48/845) after carrying out the CO-oximetry.

Table 1 shows the demographic and oxygen therapy characteristics in the group of smokers and compares them with the characteristics of the non-smokers. It can be seen that 75\% of smokers were men, which was significantly higher than in the non-smokers (χ^2; $p<.000$). The mean age of 68.06 years for smokers [95\% CI, 64.94-71.18; SD=10.75] was also significantly lower than the mean for the sample and the mean of non-smokers (t-test, $p<.001$). The number of active smokers increased in the lower age groups: 18.4\% of 60 year olds or under in our study were active smokers. This decreased to 4.9\% in the over 60s (χ^2, $p<.001$). Also, the average age for starting LTOT was significantly lower in the group of current smokers than in non-smokers: 64.77 years [95\% CI, 61.71-67.83] vs 75.68 [95\% CI, 74.97-76.40]; t-test, $p<.001$.

\textbf{Smoking Characteristics (Table 2)}

Two of the 48 patients who smoked did not admit to doing so, while, in the other 46, one smoked a pipe and the others reported smoking cigarettes. The average number of cigarettes smoked was 13.12 [95\% CI, 10.73-15.52; SD=7.97; range: 2-40, median=10.0\%]. It must be noted that almost 50\% of those who admitted smoking consumed more than 10 cigarettes a day, and had other characteristics that indicated a high degree of physical dependence on nicotine. For example, more than 65\% had their first cigarette within 30 mins of getting up, and more than 52\% admitted that smoking was what they needed most (table 3).

With regard to the stage of quitting smoking, 21 subjects (45.7\%) were found to be in the preparation stage; 5 (10.9\%) in the contemplation stage and 20 (43.5\%) in the pre-contemplation stage. Eighteen (39\%) of the smokers had never tried to stop and the rest had tried occasionally. The maximum duration without smoking was 11.34 months (mode and median=1). In the past year, 16 (34.8\%) patients had made an attempt. Nine of them (56\%) did so without any type of health or drug treatment. Of the remaining 7, 4 (57\%) made an attempt to stop after medical advice without drug treatment and 3 received medication (43\%): 1 with nicotine replacement therapy (NRT), 1 with bupropion and varenicline, and the third with NRT, bupropion and varenicline. The mean time without smoking was 1.4 months.
Table 1

Demographic and chronic home oxygen therapy characteristics in current smokers. Compared with current non-smokers

	≤60 years	>60 years	p - Value
Mean age (SD)	461 (54.6)	114 (14.3)	<0.001
LTOT Time (months)	36 (75)	757 (95.1)	>0.05
Flow L/min [95% CI] (SD)	39.08 [37.29-40.86]	39.99 [31.56-48.42]	<0.001
Oxygen source (%):	Gas, concentrator, liquid	61.71 (18.4)	1.90 (1.76-2.04) (0.48)
	4 (8.3)	3 (10.75)	>0.05
Current smokers	9 (18.4)	4 (8.3)	>0.05
Current non-smokers	40 (81.6)	39 (87.5)	>0.05
Total	49 (5.8)	84 (9.9)	>0.05

Discussion

A cross-sectional study was carried out to analyse the prevalence and attitudes towards smoking of a group of patients over 40 years old with chronic respiratory failure undergoing LTOT in the Community of Madrid. The main findings were: a) 5.7% of these patients were smokers; b) their mean Fagerström test score was 3.6 points (in addition, over 65% of them smoked their first cigarette within 30 min of getting up); c) up to 45% of them were in the preparation stage; d) 17% of the subjects stated that they had never received stop smoking advice from a health practitioner, and up to 58.7% had never sought help from a health professional to quit smoking; and e) 35% of them however had tried to stop in the past year, but less than half used a scientifically validated stop smoking treatment.

The study was conducted from the database containing information on all patients with chronic respiratory failure undergoing LTOT in the Community of Madrid. We found 11 174 patients who met the inclusion criteria: aged over 40 years and having received more than 6 months of treatment. A representative sample of 1 124 patients was obtained from this group; 925 of these were interviewed. Only 3.8% of these did not give consent to participate in the study, and the results provided corresponded to 845 valid interviews, which was sufficient according to the sample size calculation we did. A sample size larger than necessary was needed to replace patients who could not be interviewed, due to death, not giving their consent, or being untraceable. We studied patients that had undergone LTOT for over 6 months because our aim was to analyse the prevalence of smoking in patients with established LTOT. Also, the age criterion of over 40 years was used in an attempt to homogenise the sample and look for hardened smokers. However, it is worth noting that, having considered the entire population, patients with LTOT under 40 years only made up 2.6% (298/11 472) of the total. Of these, 51.3% (153) were under 10 years old and would probably have not started smoking. We believe that the methodology used minimises the possibility of deviations. Furthermore, the low cut-off of 4 ppm of CO in exhaled breath, to differentiate between smokers and non-smokers, meant we were able to detect both habitual and occasional smokers.

Although only 45 of the 845 respondents (5.3%) initially declared themselves as active smokers, we found 3 more cases of active smoking after performing the CO-oximetry. This increased the prevalence to 5.7%. This figure is high, considering both the type of people it relates to and the pathology they are suffering. In fact, the prevalence of smoking in the general population of the Community of Madrid in people of 60 or more years old, which is the predominant group among these patients, is 12.3%. However, in a similar but less extensive study conducted 9 years ago, it was found that the prevalence of smoking among this group of patients was 11%. Other previous studies in Spain and abroad have found higher figures. One of these, the Cornette study, found figures of 8.4% rising to 17% when the measurement of urinary cotinine was used. In our case, the difference in prevalence found between using the survey and CO-oximetry was just 0.4%. We believe that this difference may be due to when the surveys were conducted. The Cienfuegos et al and Cornette et al. surveys were carried out more than 9 and 13 years ago, respectively. We are convinced that the awareness of smoking both in the general population and among health professionals has improved in both Spain and in Europe over the last few years.

The majority of the smokers were male and aged between 40 and 60 years old, which may have clinical implications. We also found that the younger people smoked slightly more cigarettes per day on average and were more dependent than older people. However, there
Table 2
Smoking characteristics

<table>
<thead>
<tr>
<th></th>
<th>Current mean</th>
<th>Mean age for starting smoking</th>
<th>Mean max No. cigarettes smoked per day</th>
<th>Mean years smoking</th>
<th>Mean no. of packs/year</th>
<th>Mean CO</th>
<th>Mean %carboxyHb</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(SD) interval</td>
<td>(95% CI) (SD)</td>
<td>(95% CI) (SD)</td>
<td>(95% CI)</td>
<td>(95% CI) (SD)</td>
<td>(95% CI) (SD)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Women</td>
<td>Men</td>
<td>Women</td>
<td>Men</td>
<td>Women</td>
<td>Men</td>
<td>Women</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Women</td>
<td>n=11</td>
<td>n=12</td>
<td>n=34</td>
<td>n=12</td>
<td>n=36</td>
<td>n=12</td>
</tr>
<tr>
<td></td>
<td>Men</td>
<td>n=36</td>
<td>n=36</td>
<td>n=12</td>
<td>n=36</td>
<td>n=12</td>
<td>n=36</td>
</tr>
<tr>
<td></td>
<td>≤60</td>
<td>>60</td>
<td>≤60</td>
<td>>60</td>
<td>≤60</td>
<td>>60</td>
<td>≤60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ex-smokers n=438</td>
<td>-</td>
<td>16.95</td>
<td>16.95</td>
<td>20.73</td>
<td>20.73</td>
<td>20.73</td>
<td>20.73</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Women</td>
<td>n=57</td>
<td>n=381</td>
<td>n=60</td>
<td>n=30</td>
<td>n=60</td>
<td>n=30</td>
</tr>
<tr>
<td></td>
<td>Men</td>
<td>n=30</td>
<td>n=408</td>
<td>n=60</td>
<td>n=408</td>
<td>n=60</td>
<td>n=408</td>
</tr>
<tr>
<td></td>
<td>≤60</td>
<td>>60</td>
<td>≤60</td>
<td>>60</td>
<td>≤60</td>
<td>>60</td>
<td>≤60</td>
</tr>
<tr>
<td></td>
<td>16.95</td>
<td>16.95</td>
<td>16.95</td>
<td>16.95</td>
<td>16.95</td>
<td>16.95</td>
<td>16.95</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-smokers n=359</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Women</td>
<td>n=215</td>
<td>n=44</td>
<td>n=60</td>
<td>n=10</td>
<td>n=60</td>
<td>n=10</td>
</tr>
<tr>
<td></td>
<td>Men</td>
<td>n=44</td>
<td>n=44</td>
<td>n=60</td>
<td>n=44</td>
<td>n=60</td>
<td>n=44</td>
</tr>
<tr>
<td></td>
<td>≤60</td>
<td>>60</td>
<td>≤60</td>
<td>>60</td>
<td>≤60</td>
<td>>60</td>
<td>≤60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Significant with respect to ex-smokers (t-test) p<.008.

1Significant with respect to ex-smokers and non-smoker (t-test) p<.001.

2Significant with respect to non-smokers (t-test) p<.001.

3Significant with respect to women (t-test) p<.001.

4Significant with respect to women (t-test) p=0.05 and Mann-Whitney u-test p=0.016.

5Significant with respect to ≤60 years (t-test and Mann-Whitney u-test) p=0.02.

6Significant with respect to ≥60 years (t-test) p=0.01.
were no statistically significant differences. Although all patients with chronic respiratory failure treated with LTOT should be alerted about their smoking, our study found a special risk group (men under 60 years) who should be particularly questioned about their smoking. It is also worth noting that, in our study, women who smoked had a higher dependency ratio than men, smoking more cigarettes per day, and with higher levels of CO in exhaled air.

Fifty percent of smokers smoked over 10 cigarettes per day, with the average consumption being 13. This figure is not very different from that found in the survey of smokers in the general population of the Community of Madrid, which was 15.1 a day. However, in our group, the average level of CO in expired air was only 8.5 ppm, which is slightly lower than expected for the number of cigarettes smoked per day by these patients. Presumably, these individuals had a particular consumption pattern: to inhale lightly and superficially and to have a slower rate of smoking.

References

