Obstructive Sleep Apnea-Hypopnea Syndrome in Children Is Not Associated With Obesity

Olaia Sardón, Eduardo González Pérez-Yarza, Ane Aldasoro, Andrea Bordoy, Javier Mintegui, and José Ignacio Emparanza

OBJECTIVE: The prevalence of obstructive sleep apnea-hypopnea syndrome (OSAHS) in the general pediatric population ranges from 1% to 3%. However, its prevalence in an unsel ected population of obese children is unknown. We studied the association between obesity and OSAHS in children diagnosed with the syndrome in a cohort of boys and girls (age range, 2-14 years) referred to the pediatric respiratory medicine outpatient clinic at our hospital for suspected apnea, snoring, or both over the past 5 years.

PATIENTS AND METHODS: The medical history of each patient was recorded and all patients underwent a physical examination, chest and nasal cavities radiography, and 8-channel respiratory polygraphy during sleep. The following variables were evaluated: sex, reason for consultation, source of referral, findings during upper airway examination, age, weight z-score (reflecting how much a finding differs from the mean and in what direction in a normally distributed sample), height z-score, body mass index (BMI) z-score, number of apneas, number of hypopneas, and oxygen saturation (mean and minimum) measured by pulse oximetry, number of snores, and snoring index.

RESULTS: Of the 400 patients studied, 242 (60.5%) were male and 158 (39.5%) female. The mean age was 4.95 years. AHI ≥ 1 was diagnosed in 298 cases (74.5%) and these patients were then studied to determine the relation between OSAHS and obesity. The anthropometric distribution (expressed as mean [SD]) was as follows: weight z-score, 0.37 (1.33); height z-score, 0.23 (1.19); BMI, 17.063 ± 2.51 kg/m²; and BMI z-score, 0.39 (1.36). The respiratory polygraphy during sleep recorded an AHI of 6.56 ± 7.56.

CONCLUSIONS: No differences were observed between the height z-score, weight z-score, BMI z-score, and AHI. No association between obesity and OSAHS was found in this series. However, studies of larger, unsel ected populations are needed to determine if obesity is a risk factor for OSAHS in children.

Key words: Obstructive sleep apnea-hypopnea syndrome. OSAHS. Obstructive apnea. Obesity. Children.

Obstructive Sleep Apnea-Hypopnea Syndrome

El síndrome de apneas-hipoapneas obstructivas durante el sueño en niños no se asocia a obesidad

OBJETIVO: El síndrome de apneas-hipoapneas obstructivas durante el sueño (SAHOS) alcanza una prevalencia del 1-3% en población general infantil. Sin embargo, en población obesa no preseleccionada la prevalencia es desconocida. Para estudiar la asociación entre SAHOS y obesidad en niños diagnosti cos de dicho trastorno, hemos analizado a una cohorte de niños y niñas (2-14 años) remiti dos en los últimos 5 años a consulta externa de neumología infantil por sospecha de apneas durante el sueño, ronquidos o ambos.

PA CIENTES Y MÉTODOS: A los pacientes incluidos se les realizaron anamnesis, exploración física, radiografía de tórax y poligrafía respiratoria durante el sueño.

RESULTADOS: Se estudió a 400 pacientes, con una edad media de 4.95 años, de los que 242 eran varones (60.5%) y 158 niñas (39.5%). Se diagnosticó de SAHOS (IAH/h ≥ 3) a 298 (74.5%). El índice de masa corporal (IMC) se calculó como la media del IMC de una distribución normal, z-score de la talla y en qué dirección respecto de la media de la talla de una distribución normal, z-score del índice de masa corporal (IMC); z-score del índice de masa corporal y en qué dirección respecto de la media del IMC de una distribución normal, número de apneas, número de hipoapneas, índice de apneas/h, índice de hipoapneas/h, índice de apneas-hipoapneas/h (IAH/h), saturación de oxígeno por pulsooximetría (media y mínimos), número de ronquidos e índice de ronquido/h.

CONCLUSIONES: No se han encontrado diferencias entre z-talla, z-peso, z-IMC, edad e IAH/h. En esta serie la obesidad no se asocia a SAHOS. Sin embargo, se requieren estudios en poblaciones más amplias y no preseleccionadas para evaluar si la obesidad actúa o no como factor de riesgo para desarrollar SAHOS en niños.

Key words: Síndrome de apneas-hipoapneas durante el sueño. Apneas obstructivas. Obesidad. Niños.

Original Articles

Obstructive Sleep Apnea-Hypopnea Syndrome

(ORIGINAL ARTICLES)

Unidad de Neumología, Servicio de Pediatría, Hospital Donostia, San Sebastián, Guipúzcoa, Spain.

Unidad de Epidemiología Clínica e Investigación, Hospital Donostia, San Sebastián, Guipúzcoa, Spain.

Correspondence: Dra. O. Sardón.
Tel.: +34 943 38 29 29. Fax: +34 943 38 29 30.
E-mail: osardon@chdo.osakidetza.net

Manuscript received September 13, 2005. Accepted for publication April 11, 2006.

Arch Bronconeumol. 2006;42(11):583-7
obesity is a predisposing factor for developing OSAHS, although it is not clear that the same is true for children. In selected populations of at-risk children, the prevalence of OSAHS in obese and morbidly obese children has been reported as 0.7% to 5.7% and 13.3%, respectively; however, the prevalence of sleep-related breathing disorders, such as OSAHS, in an unselected obese pediatric population is unknown.2-5 To clarify this situation, we studied a consecutive sample of boys and girls referred to the pediatric respiratory medicine outpatient clinic at our hospital for suspected apnea, snoring, or both over the past 5 years. The objective was to determine the possible association between OSAHS, which was diagnosed by respiratory polygraphy, and obesity.

Patients and Methods
We undertook a retrospective study of a cohort of boys and girls (age range, 2 to 14 years) referred by outpatient services from otorhinolaryngology, pediatric respiratory medicine, and primary care clinics for suspected apnea, snoring, or both from October 1998 through December 2004. A detailed medical history of each patient was recorded and all underwent a standard physical examination. The following characteristics were recorded: weight (kg), weight z-score (reflecting how much a score differs from the mean and in what direction in a normally distributed sample), height (cm), height z-score, body mass index (BMI; kg/m²), and BMI z-score. These measurements were obtained using standard techniques (a single qualified observer using a stadiometer [Holtain, Cambridge, UK] and a scale [SECA, Hamburg, Germany]). The growth tables published by the Orbegozo Foundation were used to obtain standard height and weight growth percentiles.6

All patients underwent chest and nasal cavity radiography. Respiratory polygraphy (Sibelhome 300 [Sibel, Barcelona, Spain] and Apnoescreen Pro [Jaeger, GMBH, Wuerzburg, Germany]) was performed in all cases on an inpatient basis from 9 p.m. to 7 a.m., with a mean duration of 7 hours. The following variables were evaluated: oronasal airflow (recorded using a thermistor sensor); thoracic and abdominal movements (piezoelectric sensors); oxygen saturation in arterial blood (SpO₂) and heart rate (both measured by pulse oximetry); body position, and snoring (detected by polygraph). Muscle activity was monitored (Apnoescreen Pro) over the last 4 years of the study. The final reading was obtained through deferred manual analysis by a single observer over the course of the study period.

The following qualitative variables were analyzed in all cases: sex, reason for consultation (snoring, apnea, or both), source of referral (otorhinolaryngology, pediatric respiratory medicine, or primary care outpatient clinics), and findings from examination of the upper airways (tonsillar, adenoid, or adenotonsillar hypertrophy or normal structures). The following quantitative variables were also evaluated: weight z-score, height z-score, BMI z-score, number of apneas, number of hypopneas, apnea index, hypopnea index, apnea-hypopnea index (AHI), SpO₂ (mean and minimum), number of snoring, and snore index. Central apneas were excluded from this study.

Obstructive apnea was defined as a decrease of 90% or more in oronasal airflow for at least 2 respiratory cycles, accompanied by a decrease in SpO₂. Obstructive hypopnea was defined as a decrease in airflow of more than 50% (measured by oronasal thermistor) for at least 2 respiratory cycles, accompanied by a decrease in SpO₂. OSAHS was considered mild (AHI 3-5), moderate (AHI 6-9), or severe (AHI ≥10).3-5 Patients with a BMI above the 95th percentile for their age and sex were considered obese.3,5

Statistical Analysis
The Student t test was used to determine the association between sexes for weight, height, and BMI z-scores. A linear regression model was used to evaluate the association between weight z-score, height z-score, BMI z-score, age, and AHI. The correlations between mean SpO₂, minimum SpO₂, number of snores, and BMI z-score were also assessed.

Results
We evaluated a cohort of 400 patients referred to the pediatric respiratory medicine unit for respiratory polygraphy by the outpatient departments of otorhinolaryngology (n=159; 39.8%), primary care (n=145; 36.2%), pediatric respiratory medicine (n=70; 17.5%), and other departments (n=26, 6.5%). The mean (SD) age of this initial cohort was 4.95 (2.3) years; 242 were boys (60.5%) and 158 girls (39.5%). The reason for consultation was clinical suspicion of apnea in 191 cases (47.8%), snoring and apnea in 101 (25.2%), snoring in 87 (21.8%), and other complaints in 21 (5.2%) (Table 1).

Of the 400 patients evaluated, OSAHS (AHI≥3) was diagnosed in 298 (74.5%). All patients diagnosed with OSAHS (n=298) were evaluated to determine the relation between OSAHS and obesity. The mean AHI, as measured by respiratory polygraph, was 6.5 (7.5)

<table>
<thead>
<tr>
<th>TABLE I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descriptive Characteristics of the Cohort Studied</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Sex</td>
</tr>
<tr>
<td>Male</td>
</tr>
<tr>
<td>Female</td>
</tr>
<tr>
<td>Source of referral</td>
</tr>
<tr>
<td>Pediatric respiratory medicine</td>
</tr>
<tr>
<td>Otorhinolaryngology</td>
</tr>
<tr>
<td>Primary care</td>
</tr>
<tr>
<td>Other</td>
</tr>
<tr>
<td>Reason for consultation</td>
</tr>
<tr>
<td>Suspected of apneas</td>
</tr>
<tr>
<td>Snoring</td>
</tr>
<tr>
<td>Apnea and snoring</td>
</tr>
<tr>
<td>Other</td>
</tr>
</tbody>
</table>

Findings from otorhinolaryngology examination?
- Adenoid hypertrophy | 73 | 18.2 |
- Tonsillar hypertrophy | 87 | 21.8 |
- Adenotonsillar hypertrophy | 211 | 52.8 |
- Normal | 28 | 7 |

Anthropometry
- Weight z-score ≥2 SD | 35 | 13.8 |
- Height z-score ≥2 SD | 32 | 14.8 |
- BMI z-score ≥2 SD | 34 | 15 |

BMI indicates body mass index.
†Findings for 1 patient were unavailable.
The anthropometric distribution of the sample was as follows: weight z-score, 0.3 (1.3); height z-score, 0.2 (1.1); BMI, 17 (2.5); and BMI z-score, 0.3 (1.3) (Table 3).

Of the 298 cases (74.5%) diagnosed with OSAHS, full anthropometric measurements (weight z-score, height z-score, BMI z-score, and BMI) were recorded in 255 (85.6%). However, anthropometric data was incomplete in 43 subjects (14.4%). No significant differences between males and females were found in the z-scores for weight, height, or BMI (Table 4). Likewise, no association was found between the height z-score (correlation coefficient, r=0.08), weight z-score (r=0.06), BMI z-score (r=0.07), age (r=0.006), or AHI. Nor was any relation found between mean SpO2, minimum SpO2, and BMI z-score, for international comparisons between various populations. However, a correlation was found between mean SpO2 during sleep in children with a high BMI and TNF-α, which indicates that obesity could be considered a chronic inflammatory condition. Some authors have proposed distinguishing between OSAHS caused by adenotonsillar hypertrophy (generally described in children who are underweight for their age) and OSAHS in adolescents and obese children, whose pattern of disease more closely resembles that of OSAHS in adults. A recent study described elevated C-reactive protein and other inflammatory markers (IL-6 and TNF-α) that have implications for cardiovascular comorbidity and atherogenesis; however, these findings have not been confirmed in children.20

Discussion

OSAHS is very common in children and adults, with a prevalence that ranges from 1% to 3% in children and 2% to 4% in adults. Adenotonsillar hypertrophy is the most common cause of OSAHS in childhood. Other causes include neuromuscular diseases (types 1 and 2 Arnold-Chiari malformation, myotonic dystrophy, and several myopathies) and craniofacial anomalies (microretrognathia, Gothic palate, and Down, Apert and Crouzon syndromes). In addition, several proinflammatory factors—such as C-reactive protein, tumor necrosis factor (TNF-α), and interleukin 6 (IL-6), all of which produce local inflammation of the airway mucosa—may contribute to airway obstruction and may also, therefore, play a significant role in the etiopathogenesis of this clinical entity in children.11–13

The prevalence of obesity and overweight has risen in the last 10 years, by approximately 10% in the United States of America, where studies show that between 0.1% and 4% of children aged 2 to 18 years are underweight and 5% to 18% are overweight.14,15 Recently, Cole et al16 proposed a new definition for obesity and overweight in children. They developed BMI tables that can predict obesity (defined as BMI>25 kg/m2) and overweight in children. They developed BMI tables that can predict obesity (defined as BMI>25 kg/m2) and overweight in children. They developed BMI tables that can predict obesity (defined as BMI>25 kg/m2) and overweight (BMI>30 kg/m2) at age 18, based on international data for children aged 2 to 18 years. The use of international standards for measuring obesity and overweight is less arbitrary and, as a result, allows for international comparisons between various populations.

Although the association between obesity and OSAHS in adults has been widely described, the prevalence of OSAHS among obese children is highly variable.11,14 Although obesity is not considered a clear predictor of OSAHS in children, it has been reported to be associated with snoring and transient nocturnal oxygen desaturation.10 On the other hand, the increase in pediatric obesity is associated with illness characterized of adiposity, an increase in type 2 diabetes mellitus, insulin resistance, hypertension, lipid metabolic disorder, and heart disease. Adults with sleep-disordered breathing have elevated levels of C-reactive protein and other inflammatory markers (IL-6 and TNF-α) that have implications for cardiovascular comorbidity and atherogenesis; however, these findings have not been confirmed in children.20

A recent study described elevated C-reactive protein level to be associated with a higher AHI and a decrease in SpO2 during sleep in children with a high BMI and sleep-disordered breathing.21 These findings suggest that obesity could be considered a chronic inflammatory condition. Some authors have proposed distinguishing between OSAHS caused by adenotonsillar hypertrophy (generally described in children who are underweight for their age) and OSAHS in adolescents and obese children, whose pattern of disease more closely resembles that of OSAHS in adults.22

Marcus et al23 described a positive correlation between obesity and AHI and a negative correlation between obesity and oxygen saturation during sleep. That study found an increase in the prevalence of sleep-disordered breathing in the obese children studied. Nevertheless, since the sample consisted of obese preadolescents (mean age, 10 years), it may not be representative of the general pediatric population but...
rather behave like a population of young adults. This would mean that the prevalence of sleep-disordered breathing in an unselected population of obese children is still unknown.2

According to McNamara and Sullivan, obesity in childhood is not the risk factor for developing OSAHS that it is in adults; in very young children, however, obesity may sometimes be associated with delayed growth. The findings of Rosen3 who evaluated the clinical characteristics of children diagnosed with OSAHS by polysomnography, were similar. That study found no association between sex or obesity and AHI even though the incidence of obesity in the study population was double that of the general pediatric population.

In our cohort, obesity was not associated with OSAHS (AHI, the number of snores, mean SpO2, minimum SpO2, or sex. Our study enrolled children diagnosed with OSAHS and referred for respiratory consultation for suspected apnea and/or snoring by outpatient otolaryngology and primary care clinics. As a result, our series of patients was not representative of the general pediatric population, and this was a limitation of our study.

However, anthropometric data from our series indicates that the children we studied were heavier (13.8% had a weight z-score >2 standard deviations above the mean) and more obese (15% had a BMI z-score >2 standard deviations above the mean) than the general pediatric population used as a reference for the growth tables created by the Orbegozo Foundation in 2004 (Table 1). Therefore, obesity does not appear to be related to OSAHS, although studies of the general pediatric population would be necessary to determine whether or not obesity is a risk factor for developing this disease.

Chng et al.4 recently described the association between habitual snorers and obesity (odds ratio [OR], 3.7; 95% confidence interval [CI], 1.68-4), allergic rhinitis (OR, 2.9; 95% CI, 2.06-4.08), and atopic dermatitis (OR, 1.8; 95% CI, 1.2-2.5). The odds ratio of a child with these 3 diseases being a snorer is 7.4 (95% CI, 3.4-15.9). Similarly, Sült et al.5 have reported a significant association between obesity, respiratory wheezing, and asthma.

Polysomnography is the gold standard diagnostic test for pediatric OSAHS.5 However, due to the technical and economic difficulties involved in polysomnography, alternative diagnostic techniques have been proposed. One such technique is respiratory polygraphy during sleep, a technique validated in adults for the diagnosis of OSAHS (sensitivity, 97%; specificity, 90%), although validation for use in children is pending.27-29 Although respiratory polygraphy may underestimate hypopnea, missing some episodes, it is considered an adequate screening technique for the study of pediatric OSAHS.30-32 However, because respiratory polygraphy can cause some technical difficulties, polysomnography should be performed when clinical suspicion is high, even if results from the polygraph are negative. In Spain, such patients are referred for the study of sleep-disordered breathing to our sleep laboratory at the Hospital Txagorritxu in Vitoria, Spain. In summary, we can state that childhood obesity was not associated with OSAHS in our series. However, studies of larger, unselected populations are required to continue evaluating the association between obesity and sleep-disordered breathing during childhood.

REFERENCES

SARDÓN O ET AL. OBSTRUCTIVE SLEEP APNEA-HYPOPEANEA SYNDROME IN CHILDREN IS NOT ASSOCIATED WITH OBESITY

586 Arch Bronconeumol. 2006;42(11):583-7
protein in children with obstructive sleep-disordered breathing.
protein levels among children with sleep-disordered breathing.
22. Kelly A, Marcus CL. Childhood obesity, inflammation and apnea.
What is the future for our children? Am J Crit Care Med.
23. Marcus CL, Curtis S, Kromer CB, Joffe A, Servient IR, Loughlin
GM. Evaluation of pulmonary function and polysomnography in
24. Rosen CL. Clinical features of obstructive sleep apnea
hypopertilation syndrome in otherwise healthy children. Pediatr
25. Chung SY, Goh DY, Wang XS, Tam TN, Ong NB. Snoring and
apnea: a strong association. Pediatr Pulmonol. 2004;38:
210-6.
Associations of obesity, sleep-disordered breathing and wheezing
27. Calzada JM, Estrada S, Rubo R, Durán J. Comparison of a
cardiorespiratory device versus polysomnography for diagnosis of
28. Durán J. ¿Hacia dónde va el diagnóstico del síndrome de
apneas-hipopneas durante el sueño? Arch Bronconeumol. 2005;41:
645-8.
29. Durán J, Mar J, de la Torre G, Rubo R, Guerra L. El síndrome de
apneas-hipopneas durante el sueño en España. Disponibilidad de
recursos para su diagnóstico y tratamiento en los hospitales del
Respiratory monitoring by means of an unattended device in
children with suspected uncomplicated obstructive sleep apnea: a
31. Monter A, Sacnas M, Wink JC, Almeida J. Home
cardiopulmonary sleep study in children. Will it be feasible? Rev
32. Candela A, Hernández L, Asensio S, Sánchez-Paya J, Villa J,
Benito N, et al. Validación de un equipo de poligrafía respiratoria
en el diagnóstico del síndrome de apneas durante el sueño. Arch
33. Martínez MA, Soler JJ, Roman P. Uso secuencial de la
pulsoximetría nocturna y la poligrafía respiratoria (AutoSet®)
para el diagnóstico del síndrome de apneas-hipopneas durante el
sueño en pacientes con alta sospecha clínica. Arch Bronconeumol.