Microorganisms and cancer: Scientific evidence and new hypotheses

Encarna Velázquez, Álvaro Peix, Alberto Gómez-Alonso

Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
IRNASA-CSIC, Salamanca, Spain
Departamento de Cirugía, Universidad de Salamanca, Salamanca, Spain

ARTICLE INFORMATION

Article history:
Received January 14, 2010
Accepted August 3, 2010

Keywords:
Cancer
Microorganisms
Humans

ABSTRACT

Microorganism involvement in cancer has been known for over a century, and different types of parasites, bacteria and viruses have been associated with oncogenic processes. Among the bacteria, the first recognised was Helicobacter pylori which causes gastric cancer and might be related to extra-gastric cancer in humans. Helicobacter hepaticus has been associated with liver cancers using animal models. Other bacteria such as, Chlamydia psitacii, Borrelia burgdorferi and Streptococcus bovis have been associated with ocular, skin and colorectal cancers, respectively. Also, a commensal bacterium in the human intestine, Bacteroides fragilis, has been linked, very recently, with colorectal cancer using animal models.

© 2010 AEC. Published by Elsevier España, S.L. All rights reserved.

Microorganismos y cáncer: evidencias científicas y nuevas hipótesis

RESUMEN

La implicación de los microorganismos en el cáncer humano se conoce desde hace más de un siglo y diferentes tipos de parásitos, bacterias y virus se han relacionado con procesos oncopéicos. Dentro de las bacterias, la primera reconocida como carcinogénica fue Helicobacter pylori, que causa cáncer gástrico y podría estar relacionada con cánceres extragastricos en el hombre. Helicobacter hepaticus se ha relacionado con cánceres hepáticos utilizando modelos animales. Otras bacterias, como Chlamydia psitacii, Borrelia burgdorferi y Streptococcus bovis, se han relacionado con cánceres oculares, de piel y colorectal, respectivamente. Además, una bacteria comensal del intestino humano, Bacteroides fragilis, se ha vinculado muy recientemente con el cáncer colorectal utilizando modelos animales.

© 2010 AEC. Publicado por Elsevier España, S.L. Todos los derechos reservados.
Introduction

Discovering that microorganisms produce diseases was one of the main milestones for microbiology during the 19th century, and at the end of that century, microbiologists started looking for the origin of many diseases in these organisms, including cancer. Several authors have recently reviewed which microorganisms cause cancer in humans.1-3 Zur Hausen receives special attention, having been awarded the 2008 Nobel Prize in Medicine for his research on human papillomavirus and its involvement in cervical cancer.4,5 There is increasing evidence on the involvement of different parasites, viruses and bacterium in human cancer (Table) and the latest research results indicate that more in-depth research on the role of microorganisms is needed.

First were the parasites...

The first human cancer-related microorganisms discovered were different parasites.4 To be exact, *Opisthorchis felineus* was associated with liver cancer,6 *Bilharzia* (schistosomiasis) with bladder cancer,7 and *Spirocerca lupi* with granulomas in dogs which could transform to sarcomas.8 The International Agency for Research on Cancer (IARC) considered the results from these studies, as well as others, and concluded that there is sufficient evidence that *Schistosoma haematobium* and *Clonorchis viverrini* play a role in human cancer.9 *Schistosoma haematobium* is currently one of the main causes of gallbladder cancer in Egypt and *Opisthorchis viverrini* and *Clonorchis sinensis* are important factors in bile duct cancer and liver cancer in south east Thailand and southern China.5

...Then the viruses...

The next microorganisms found to be involved in different types of tumours were viruses.4,5 M’Faydan and Hobday published their study on the transmission of warts among animals in 1898.10 In 1911, Rous showed that a solid tumour, fowl sarcoma, was transmissible with cell-free filtrates.11 From this point onwards, other viruses were related with tumour development in animals, such as the mammary gland tumour virus in mice,12 polyomaviruses,13 a virus which provokes erythroblastosis in adult mice liver,14 and Simian Virus 40 (from monkey liver) which provoked invasive tumours in very few months when new born hamsters were inoculated.15,16 Although did the virus not reproduce in these tumours, a specific antigen was produced,17 as occurred with papillomavirus-induced tumours.18

In humans, the first oncogenic virus was described by Burkitt, a surgeon who worked in Africa and detected a lymphoma in children in certain areas of the continent.19 It was then discovered that the cause was a virus,20 later named Epstein-Barr virus, responsible for infectious mononucleosis.21 Immunological techniques were developed to detect viral antigens, meaning that high titres of antibodies could be found in patients with Burkitt’s lymphoma22 and in nasopharyngeal cancers.23

During the 1970s, a virus isolated from acute myelogenous leukaemia cells was classified24 and the presence of mouse

Table – Microorganisms that have been related with different cancers

<table>
<thead>
<tr>
<th>Microbial species</th>
<th>Cancer location or type</th>
<th>Host</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parasites</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schistosoma haematobium</td>
<td>Gallbladder</td>
<td>Human</td>
</tr>
<tr>
<td>Opisthorchis viverrini</td>
<td>Liver</td>
<td>Human</td>
</tr>
<tr>
<td>Clonorchis sinensis</td>
<td>Liver</td>
<td>Human</td>
</tr>
<tr>
<td>Bacteria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacteroides fragilis</td>
<td>Colorectal</td>
<td>Mouse</td>
</tr>
<tr>
<td>Borrelia burgdorferi</td>
<td>Skin</td>
<td>Human</td>
</tr>
<tr>
<td>Chlamydia psittaci</td>
<td>Eye</td>
<td>Human</td>
</tr>
<tr>
<td>Helicobacter pylori</td>
<td>Gastrointestinal tract</td>
<td>Human</td>
</tr>
<tr>
<td>Helicobacter pylori</td>
<td>Eye</td>
<td>Human</td>
</tr>
<tr>
<td>Helicobacter pylori</td>
<td>Breast</td>
<td>Human</td>
</tr>
<tr>
<td>Helicobacter hepaticus</td>
<td>Hepatobiliary</td>
<td>Mouse and possibly human</td>
</tr>
<tr>
<td>Streptococcus bovis</td>
<td>Intestine</td>
<td>Human</td>
</tr>
<tr>
<td>Virus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epstein-Barr (EBV)</td>
<td>B-cell, Burkitt and Hodgkin lymphoma, nasopharyngeal cancer</td>
<td>Human</td>
</tr>
<tr>
<td>Herpesvirus 8</td>
<td>Kaposi’s sarcoma</td>
<td>Human</td>
</tr>
<tr>
<td>Papillomavirus</td>
<td>Cervical and other sexual organs</td>
<td>Human</td>
</tr>
<tr>
<td>Hepatitis B and C virus (HBV and HCV)</td>
<td>Liver</td>
<td>Human</td>
</tr>
<tr>
<td>HTLV-1 virus</td>
<td>Leukaemia</td>
<td>Human</td>
</tr>
<tr>
<td>SV40 virus</td>
<td>Liver</td>
<td>Monkey, mouse, and hamster</td>
</tr>
<tr>
<td>Mouse mammary tumour virus (MMTV)</td>
<td>Breast</td>
<td>Mouse</td>
</tr>
</tbody>
</table>
mammary tumour virus was found in breast milk and breast cancer.25 Later, hepatitis B was found to be involved in liver cancer,26 retroviruses were identified in a rare form of human leukaemia,27 papillomavirus was found to be involved in female cervical cancer,28,29 hepatitis C in liver cancer,30 and herpes virus 8 as the most likely Kaposi’s sarcoma agent.29

...And finally the bacteria

Although bacteriology evolved much sooner than virology, the latest microorganisms found to be involved in human cancer were bacteria. It was not until 1905 that the first results on the isolation of a tumour-derived bacteria were published, which the surgeon Doyen30 called Micrococcus neoformans. He even prepared a bacterial vaccine, which was thought to have cured cancer. It was applied by Wright, who described that it treated a case of inoperable cancer.31 The Wright group observed that this bacterium’s characteristics were compatible with the Staphylococcus genus.32 Obviously, the cancer diagnostic and bacteria identification techniques used at that time were not reliable enough to ensure that Staphylococcus genus bacteria was involved in cancer, even though it may cause infections in cancer patients,33,34 and have been isolated, with other bacteria, in solid tumours, such as breast tumours.35

The interest that awoke with regard the implication of several viruses in the different cancers forced the study on bacteria involvement in these diseases to be postponed. It was not until the end of the 20th century that the first carcinogenic bacterium was clearly related to human tumour development, being Helicobacter pylori. Its implication in gastric cancer was discovered in 1991,36–39 and in 1994, H. pylori was recognised as a carcinogenic agent.9 Some years later, experts found that the gastric cancer-producing capability was related to the presence of certain regions in the bacterium genome, called pathogenicity islands. They are called so because at their ends they have direct-repeat DNA sequences that separate them from the rest of the genome. These regions are absent in non-pathogenic strains, which can acquire them by genetic transfer.40,41 The Helicobacter pylori islands belong to the type IV secretion system,42,43 present in other pathogenic bacteria such as Agrobacterium tumefaciens and responsible for tumour formation in higher plants.44

Since H. pylori was discovered to be involved in gastric cancer, several bacteria have been identified in different types of tumours. However, experts have yet been able to show whether they are a direct cause of carcinogenesis, as in the case of Chlamydia psittaci and various types of eye cancers,45 Borrelia burgdorferi and skin lymphomas,46 different species of Streptococcus and colon cancer and other gastrointestinal cancers,47,48 and Bacteroides fragilis and colorectal cancer.49

Koch’s postulates in cancer

Research on the bacteria that may be involved in cancer has continued during the 21st century. It mainly focuses on Helicobacter pylori, on which numerous reviews have recently been published.50–52 It is difficult to show that a microorganism is capable of inducing cancer, given that an infectious agent may trigger the initial mechanisms of oncogenesis, but be absent in the final tumour.1,1 Since Robert Koch formulated his famous postulates, which must be met to ensure that a microorganism is the cause of an infectious process, only Helicobacter pylori has been proven in human beings, and only in cases of gastritis. And even so, it was not until a century after this bacterium was discovered in human stomach ulcers32 that Marshall was able to prove Koch’s postulates.54 However, this bacterium was recognised as being a category 1 carcinogen only 9 years later.9 At present, Koch’s postulates are only met in animal models, but on many occasions the causal microorganism can not be isolated, meaning that experts have to recourse to examining the microbial genes present in cancerous tissues. Koch’s postulates may therefore have to be redefined in the event that microorganisms are not found at tumour detection.

Bacteria involved in gastrointestinal cancer

After two decades of research, the role of H. pylori in certain types of gastric cancer is widely accepted, including bacterium eradication as part of its treatment.55–57 Several studies have been performed to try and establish this bacterium’s specific mechanisms of interaction with humans,58,59 virulence factors,60,61 and to which secretion system its pathogenicity islands belong.62,63 The risk of H. pylori-induced gastric cancer is greater for patients infected with strains that carry the cagA gene in a pathogenicity island.64 Furthermore, given that this island is widely distributed in people infected with H. pylori, these findings are not very reliable and it seems that there are differences between types of cancer. The relationship is more evident between strains with the island and gastric tumours which are morphologically similar to intestinal tissue as associated with p53 mutations found in intestinal cancer.65 However, both strains with and without the island can be involved in diffuse gastric cancers.66 Furthermore, certain alleles of the vacA gene, mainly involved in gastritis, are also related with gastric cancer.67,68 Variations in cag gene sequences from the H. pylori island have been found in some populations, meaning that it would be difficult to use in diagnosing the virulent strain of this bacterium.69,70 However, it is clear that the presence of this whole island in H. pylori is related to more severe gastric symptoms.71 Gastrin has also recently been confirmed as being an essential cofactor in H. pylori-induced gastric cancers in animal models.72

Given the severity and the increase in gastric cancer during the past decade in some regions of the world,73 including H. pylori-induced gastric cancer, eradication of this bacterium has been proposed for all patients with H. pylori. This is the case even if cancer has not developed as it a long process that may only express itself as atrophic gastritis74 during the first stages. Furthermore, almost all patients with mucosa-associated lymphoid tissue (MALT) gastric lymphomas were cured with this treatment.57 However, in
other types of gastric cancer, bacterium eradication only reduces its prevalence by a third.75 Bacterium eradication is not achieved in all cases, and patients infected with strains with vacA and cagA pathogenicity islands have greater risk of eradication failure.61 As such, numerous studies have been conducted on the mechanisms involved in the host immune response towards the infection,76 making it easier to promote a vaccine which prevents Helicobacter pylori-induced cancers.77

Considering the relationship between H. pylori and stomach cancer, it is possible that this bacterium is involved in gastrointestinal tract organs, given that it has been found in human bile and the gallbladder.78 However, more studies need to be conducted and more protocols standardised for detecting DNA or even anti-Helicobacter antibodies in bacteria, before being able to associate this bacterium with biliary tract cancers.79,80 Several studies have found H. pylori DNA in human liver cancers, but the exact Helicobacter species was not established in some cases.81-83 Another species of the Helicobacter genus, H. hepaticus, has been involved in hepatobiliary cancer in animal models.78,79,84,85 Very recently, using molecular biology and immunology techniques, H. hepaticus has been described as being present in the gallbladder in patients with different digestive problems, including gastric cancer.86 The results were contradictory for pancreas cancer, although a positive relationship has been found between the presence of H. pylori and this type of tumour in never smokers and subjects with a low alcohol consumption.87 Results show that there is no relationship with this bacterium for the oesophagus and larynx.88,89

The increase in the risk of suffering from colorectal cancer has been associated with infection of several microorganisms,90 among which H. pylori91 and Streptococcus bovis92 must be highlighted in humans, and H. hepaticus in mice.93 However, more studies must be conducted so as to clarify whether the latter species may cause this type of cancer in humans.94 Streptococcus bovis has been associated with colorectal cancer since the 1970s,47,95 however, some of this species strains have been reclassified as S. infantarius and S. gallolyticus.96 In accordance with the epidemiological studies, a very high association has been found between S. gallolyticus and colon cancer, while S. infantarius has a greater correlation with cancer in other gastrointestinal tract organs, such as the pancreas and bile ducts.96 Other more recent studies have found that S. gallolyticus plays a vital role in the progression of normal colorectal mucosa to adenoma and colorectal cancer.97 Given that Streptococcus-induced endocarditis are associated with colorectal cancer,47,48,95 colonoscopy has been reported to be mandatory for patients with endocarditis caused by these microorganisms.98

A study has recently been published on Bacteroides fragilis-induced tumours. It is a commensal bacterium from the human intestine, whose role in colorectal cancer may be similar to that of H. pylori in gastric cancer. Evidence has been found that the enterotoxigenic strains of this bacterium produce colitis and induce tumour in murine colon models, by activating T helper cells which could also be involved in producing cancer in humans.49

Bacteria involved in extra-gastric cancers

Staphylococcus aureus could be considered as the first bacterium to be described as a cancer-producing agent, and some authors have attempted to associate it with breast cancer,95 however, its involvement in human cancer has never been shown. Furthermore, in a recent study using cell cultures, an extracellular protein involved in S. aureus adherence has proven to maybe prevent bone metastasis in breast cancer.99 However, S. aureus-induced infection have recently been described in breast cancer cases in which the relationship between both illnesses was not clear.100 Furthermore, type 16 papillomavirus (HPV-16) has also recently been found in the genome of different bacteria isolated from cervical cancer, including Staphylococcus aureus.101 The authors suggest that the presence of these viruses in bacterial genome could explain the progression of a HPV-16-induced infection to cervical cancer, using the bacterium as a vector.101

Recent studies have also associated H. pylori with extra-gastric cancers, such as lung and breast cancer,102,104 mainly by gastrin induction, which, apart from being a hormone, is a growth factor involved in carcinogenesis and metastasis of these two types of tumours.102,103 Stress together with mast cells located in the blood-brain barrier may trigger a series of reactions which promote metastatic brain tumours originating in lung and breast cancer.105 H. pylori is involved in this process and it has been suggested that its eradication could prevent this type of brain metastasis.106

The presence of Borrelia burgdorferi DNA in certain lymphomas has lead to suggesting an association between this bacterium and non-Hodgkin skin lymphomas.46 This bacterium may survive on patients' skin for decades, and occasionally, it can develop into B-cell lymphomas and other carcinogenic neoplasms, meaning that B. burgdorferi has been suggested to be related to this type of tumour.107

In recent years, different bacteria have also been related with some types of eye cancer,108 among which we can highlight H. pylori and Chlamydia. Contradictory studies have been found for MALT-type eye cancers with regards H. pylori involvement: some studies suggesting that this bacterium is involved,109,110 while others only show negative results.111 It seems that Chlamydia is most likely to be involved in eye cancers and therefore its eradication, and that of H. pylori, has been recommended before indicating more aggressive therapies.46,109 Chlamydia psittaci is currently the only species identified in MALT-type eye cancers.110,111,112 Some authors have found geographical differences,111 with a positive relationship between this bacterium and eye cancers in Italy46 and Austria,112 and a negative one in the United States.113 It is believed that these conflicts could be due to the bacteria detection methodology used.114 Some authors have found that another species, Chlamydia trachomatis, could be a risk factor in the presence of papillomavirus in some types of carcinomas.115 It seems that this bacterium could induce an inflammatory response in ovarian cancer, which would lead to different types of cancer, although authors recommend more in-depth studies.116
Metagenomics: a new method for detecting tumour-producing bacteria

It is currently accepted that bacteria may be involved in different types of cancers. However, it is not easy to detect them due to multiple causes, including that cancer is not the result of an acute infection, and therefore the causal agent may not be extracted from the tumour. However, viral or bacterial DNA can persist during a rather long period of time, either in the tumour itself, or in the peritumoral area. Therefore, molecular techniques based on bacterial DNA amplification in tumour tissues are the most commonly applied for detecting and identifying bacteria in tumours. Detection techniques have also been proposed for “finding” exogenous DNA sequences after sequencing fragments of the tumour’s DNA. We must assume that Koch’s postulates are not going to be met very often, because even if we were to use pure cultures, the microorganisms’ carcinogenic effect must be confirmed using animal models, such as occurred recently with Bacteroides fragilis, whose carcinogenic role in humans has been suggested using findings from murine models.

Molecular biology techniques which allow non-isolated microorganisms to be identified are known as metagenomics, and are based on amplifying microbial genes directly from a sample. Subsequent sequencing identifies which microorganisms are in the sample. Some metagenomic techniques have an advantage as they can examine the microorganisms in complex ecosystems, such as the oral cavity or intestine. To analyse this type of sample, various techniques can be applied such as denaturing gradient gel electrophoresis (DGGE) based on different electrophoretic mobility due to changes in the denaturing pattern, or single-strand conformation polymorphism (SSCP), based on the secondary conformation of the single-strand DNA chains for the ribosomal 16S gene, whose sequence is the base for classifying and identifying bacteria. Furthermore, to analyse complex populations, the intergenic transcribed spacer (ITS) regions between the ribosomal 16S and 23S genes in bacteria, and between 18S and 28S in fungi are especially useful, which may be separated electrophoretically by the ribosomal intergenic spacer analysis (RISA) technique. The size of ITS in bacteria is very varied, and the RISA technique can separate the ITS for most bacterial groups. Subsequent sequencing of the separated fragments allows bacteria identification, given that they are sequenced in all pathogenic bacteria, and in the main human commensal bacteria. Intestinal bacteria populations have been analysed using this technique in colorectal and laryngeal cancer patients.

An advantage associated with metagenomic techniques is that they can identify culturable and non-culturable microorganisms present in human microbiome of healthy individuals and those affected by tumoral processes. During these processes, changes occur in the microbiome originating from the tumour process, antibiotic treatment or radiological treatment and chemotherapy. As a result, metagenomics is a promising tool for investigating which microorganisms are present in tumours, given that millions of sequences can be analysed using next-generation sequencing techniques at record speed and at much more competitive prices. There is no doubt that this type of technique, which can detect microbial genes in any sample, will contribute substantially to finding microorganisms involved in tumour formation.

Conflict of interest

The authors affirm that they have no conflict of interest.

REFERENCES

127. Scanlan PD, Shanahan F, Marchesi JR. Culture-independent analysis of desulfovibrios in the human distal colon of...
healthy, colorectal cancer and polypectomized individuals.
128. Lampe JW. The Human Microbiome Project: Getting to
the guts of the matter in cancer epidemiology. Cancer
129. Yang L, Lu X, Nossa CW, Francois F, Peek RM, Pei Z.
Inflammation and intestinal metaplasia of the
distal esophagus are associated with alterations
in the microbiome. Gastroenterology. 2009;137:
588-97.
130. Van Vliet MJ, Tissing WJ, Dun CA, Meessen NE, Kamps
WA, De Bont ES, et al. Chemotherapy treatment in
pediatric patients with acute myeloid leukemia receiving
antimicrobial prophylaxis leads to a relative increase of
colonization with potentially pathogenic bacteria in the gut.
131. Jakobsson HE, Jernberg C, Andersson AF, Sjölund-Karlsson
M, Jansson JK, Engstrand L. Short-term antibiotic treatment
has differing long-term impacts on the human throat and
132. Van Vliet MJ, Harmsen HJ, De Bont ES, Tissing WJ. The
role of intestinal microbiota in the development and
2010;6:e1000879.